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ABSTRACT 

This article explores how a chemically reactive solute will disperse across 

mobile to immobile phase when injected into the fluid flowing within a long 

circular tube. To model this process, we utilized mathematical modeling, 

including advection-diffusion equations for flow of fluid within the tube and 

first-order chemical reaction equations to account for reversible and irreversible 

reactions on the tubes’ wall. We proposed a numerical method based on an 

explicit finite difference scheme to solve the governing equations for the 

dispersion of a chemically reactive solute. We used an upwind method with a 

conservative representation in the diffusion component to discretize the 

advection-diffusion equation. To ensure the stability of our proposed numerical 

scheme, we computed the time step constraint condition so that the maximum 

principle for the discrete governing equation holds. We also verified the 

performance of our proposed scheme through computational results that were 

compared with previous studies. One of our key findings was that the depletion 

coefficient 𝐷0 achieved a quasi-steady state for larger absorption rates. We also 

observed that the advection coefficient 𝐷1 initially increased with an increasing 

absorption rate, but eventually declined due to phase exchange kinetics. The 

dispersion coefficient 𝐷2 also decreased with a rising absorption rate due to a 

low-velocity gradient in the middle region. Our study showed that rapid 

distributions are possible under certain conditions, such as a high Damköhler 

number (𝐷𝑎 ≥ 10) and a high absorption rate (𝛤>5). Computational results 

show that the proposed scheme can be useful in developing an efficient 

pulmonary drug delivery system for periodic inhalation of drugs to determine 

the optimal frequency of injection. 
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1. INTRODUCTION 

 Sir Geoffrey Ingra Taylor (1953) gave a theory of the 

distribution of chemically reactive solutes injected over a 

short time into a Newtonian liquid flowing longitudinally 

through a pipe with Poiseuille flow. His theory is 

applicable across various fields such as hydrology to find 

the dispersion of pollutants in rivers (Ani et al., 2009; Fu 

et al., 2016; Barati & Saghafian, 2022), chemistry for the 

process of chromatography (Giddings & Eyring, 2002; 

Shankar & Lenhoff, 1991; Bel Hadj Taher et al., 2022; 

Venditti et al., 2022), environment for wetland flow 

(Mazumder  & Das, 1992;Wu et al., 2012; Yang et al., 

2021), and so on. Numerous studies exist (Chatwin, 1970; 

Gill & Sakarasubramanian, 1970; Davidson  & Schroter, 

1983; Jiang & Grotberg, 1993; Wu  & Chen, 2014; 

Paramanantham, et al. 2022), which have extended 

Taylors’ theory of dispersion for different time 

approximations using analytical methods such as Aris 

(1956) used a method of moments to calculate large time 

dispersion of a gaseous solute after the initial injection 

inside the flow of fluid. Sankarasubramanian and Gill 

(1973) used the method of mean concentration expansion 

by adding phase exchange conditions to calculate the 

temporal variation in solute dispersion at all times. Wu and 

Chen (2014) used the homogenization technique and 

introduced a longitudinal correction function for finding 

the skewed distribution of transverse mean concentrations 

over a long-time scale. Rana and Murthy (2016) used the 

eigenfunction expansion method to find the coefficients of 

variation, transport coefficients and distribution 

coefficients in small- and large- time approaches. 

Additionally, Wang and Huai (2019) performed stochastic 

analysis to find the absorption probability of walls at an 
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NOMENCLATURE 

Symbols Description  Symbols Description 

𝒂 radius of circular tube  𝑁𝑧 number of cells in 𝑧 −direction 

𝐶   concentration of species  𝑃𝑒  Peclet number 

𝑐𝑚  the center of mass  Δ𝑟 cell size in radial direction 

𝑐̅  mean concentration of the mobile phase  R radial distance 

𝑐𝑡  total mass of the mobile phase  Δ𝑡  time step 

𝐶0  initial concentration  T time 

𝐶𝑠  
the concentration of species absorbed by 

the tube wall 
 𝑉  axisymmetric velocity field 

𝐷0  depletion coefficient  𝑈  radial component of the velocity 

𝐷1  dispersion coefficient  𝑊  axial component of the velocity 

𝐷2  advection coefficient  𝑊0  section-mean velocity 

𝐷𝑎  
Damköhler number indicates the kinetics 

of phase exchange. 
 Δ𝑧 cell size in axial direction 

𝐷  diffusion coefficient of species in the fluid  Z axial distance 

i index for 𝑟 −direction  𝑍𝑠  input length of the chemical solute 

k index for 𝑧 −direction  𝛼  phase partition coefficient 

𝜅  reversible phase exchange rate  Γ  
rate of solute absorbed irreversibly by the 

immobile phase 

μ𝑛  axial moment of concentration distribution  σ  variance of the distribution 

𝑁𝑟 number of cells in 𝑟 −direction  Ω domain 

 

 early stage by utilizing a random walk particle tracking 

method. Recently, Jiang et al. (2022) provided an 

analytical method that can be used to calculate higher-

order statistics including skewness and kurtosis across all 

ime scales. Therefore, consideration of time-dependent 

dispersion for long or short periods is an important factor. 

Moreover, several physiological processes can be 

understood by combining the initiative of Taylor 

dispersion with the theory of mean concentration 

distribution during transport processes, such as boundary 

uptake (Ng & Rudraiah, 2008), phase exchange (Kori & 

Pratibha, 2020; Wu et al., 2022), partitioning, energy 

uptake by cells, and binding of oxygen with hemoglobin 

(BEN-Tal, 2006). To address these processes inside the 

human body, the timeframe is as crucial as chemical 

reactions, retention, diffusion, and convection. Davidson 

and Schroter (1983) used Ariss’ method of moments with 

reversible reaction to examine the dispersion of slug and 

axial velocity at different time periods through straight and 

thick-walled tubes. Jiang and Grotberg (1993) used a 

derivative-expansion method to find the dispersion of a 

contaminated solute in a straight tube with the 

consideration of an irreversible equation. While Rana and 

Murthy (2017) used extended convection-diffusion model 

to study the transient flow of blood from arteries of 

different diameters in the presence and absence of 

absorption.  Moreover, many numerical attempts are also 

taken by focusing on these factors such as Ng and 

Rudraiah (2008) used reversible and irreversible reactions 

at the tube wall to calculate the advection and diffusion of 

chemical species through small diameter tubes (airways). 

They used a flux-corrected transport algorithm and solved 

the problem by using an explicit finite difference scheme 

with a condition for stability i.e., Courant number ≤0.5. A 

finite-difference implicit scheme with linear stability is 

used by Mazumder and Paul (2012) to analyze the 

dispersion of a chemical species through an annular tube 

with oscillatory walls. In continuation, Saini et al. (2014) 

extended the work of Ng and Rudraiah (2008) by 

including fluid reaction terms and solved the problem 

numerically using the explicit finite difference technique. 

Recently, Das et al. (2021) have investigated the influence 

of wall absorption on dispersion using the immersed 

boundary approach with staggered grids. 

 In the field of biomedical engineering to analyze the 

diffusing ability of drugs in the arterial blood, control 

release and at the targeted sites (Shaw et al., 2014; Das et 

al., 2021; Beg & Roy, 2022; Le & Tran, 2022; Mohseni & 

Domfeh, 2023) injection of solute (drug) in a frequent time 

is an important topic of research. However, several 

researchers have paid attention to the drug delivery system 

and contributed with different methods. Shaw et al. (2014) 

combined the numerical Fourier inversion approach with 

the Laplace transform methodology to look at how drug 

delivery works in nanoparticles. They stated that the 

design of nanoparticles affects the site of deposition. 

Ibrahim et al. (2013) used Taylor dispersion through a 

catheterized artery with an absorptive vascular system to 

assess the size of nanoparticles in the drug delivery system 

by using layer-adapted meshes and finite difference 

techniques. To study the dispersion of bi-component 

species within the blood flow Beg and Roy (2022) used a 

Crank-Nicolson implicit numerical scheme and predicted 

various results for drug transportation through confined 

vessels. To study the diffusion processes of a reactive 

species through a cardiovascular system a two-fluid model 

is used by Roy and Beg (2021) with low level of Peclet 

number (100). The researchers used analytical solutions to 

characterize the velocity distribution, as well as Gill’s 

decomposition approach to evaluate the concentration 

profile with first-order chemical reaction and fixed axial 

pressure gradient. Additionally, a non-Newtonian 

Hershel-Bulkley fluid model is used by Abidin et al. 

(2021) to study the flow of blood through stenosed arteries 

under the effect of chemical reactions and low range of the 

Peclet number i.e., 4 − 20. Recently, Das et al. (2022) 

employed an unsteady Carreau-Yasuda model to explore  



Jyoti et al. / JAFM, Vol. 17, No. 4, pp. 726-741, 2024.  

 

728 

 

Fig. 1 Pulmonary drug carrier distribution in which the upper left part shows how drug is injected into the 

human lung, the right part shows the magnified alveoli with the flow of drug through airstream inside the 

alveolar tube, and the bottom left is the magnified endocytosis. This figure is reprinted from Dhand et al. (2014) 

with the permission from Royal Society of Chemistry 

 

the dispersion of non-Newtonian blood via a small tube 

with pulsatile flow and evaluated several coefficients 

related to fluid transportation between blood and tissues, 

which can be beneficial in drug delivery in blood arteries.  

 From these studies we found, various features of the 

dispersion have been considered, yet the influence of the 

initially injected solute has remained largely unexplored. 

This study distinguishes itself in two crucial ways by 

addressing this factor. Firstly, we compute a time-step 

constraint to ensure the stability of our proposed numerical 

scheme, which was not commonly discussed in previous 

studies. Secondly, we consider the periodic injection of the 

solute, which has practical applications in pulmonary drug 

delivery systems. To implement these considerations, we 

calculated dispersion of a chemically reactive solute 

injected into a fluid (air, as a mobile phase) flowing 

through a long circular tube with reversible and 

irreversible reactions occurring on the tubes’ wall 

(immobile phase). We discretized the advection-diffusion 

equation by applying an upwind technique with a 

conservative representation in the diffusion component. 

To ensure the stability of the proposed numerical scheme, 

we determined the time step constraint, upholding the 

maximum principle for the discrete governing equation. 

As an application of the proposed scheme, we 

computationally calculated the dispersion of solute across 

mobile and immobile phases, incorporating periodic 

injections of the solute, which can be helpful in the 

development of efficient pulmonary drug delivery systems 

(Fig. 1). While other results provide insights into the 

impact of various factors on solute dispersion and 

chemical reactions. 

 The section wise organization of the remaining paper 

is defined as: the advection-diffusion model, non-

dimensionalization units, numerical solution technique, 

and stability analysis are all covered in Section 2. Section 

3 provides computational experiments, while Section 4 

comprises conclusions. 

2.   METHODS 

2.1 Governing Equations 

 We consider the fully developed unsteady, 

incompressible laminar flow of a Newtonian fluid moving 

through a long, circular tube with radius ‘ 𝒂 ’ and an 

axisymmetric velocity field 𝑽 = (𝑼, 𝑾), , where 𝑼 =
𝑼(𝑹, 𝒁, 𝑻)  and 𝑾 = 𝑾(𝑹, 𝒁, 𝑻)  are the radial and axial 

components of the velocity, respectively, and ‘ 𝑻 ’ 

represents time. During the flow of fluid, a miscible 

chemical solute is injected inside the fluid for a very small 

distance at a very short time. To study the diffusion of the 
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chemical solute from the mobile (fluid) to immobile (wall 

tissues) phase, which is reactive at the tube wall, we used 

a two-dimensional unsteady convection-diffusion model 

(Ng & Rudraiah, 2008; Kori & Pratibha, 2020, 2022):  

∂C(R,Z,T)

∂T
+ 𝑈(R, Z, T)

∂C(R,Z,T)

∂R
+ 𝑊(R, Z, T)

∂C(R,Z,T)

∂Z
=

𝐷 [
1

𝑅

𝜕

𝜕𝑅
(R

∂C(R,Z,T)

∂R
) +

∂2C(R,Z,T)

∂Z2 ] ,                                                                      

(1) 

where (R, Z, T) ∈ Ω = (0, a) × (0, ∞), 𝐶(R, Z, T) is the 

concentration of species, and D is the diffusion coefficient 

of species in the fluid. In Eq. (1) we focused only on 

complete convection occurring in the axial direction, 

while complete diffusion takes place in the radial 

direction. Due to the no slip condition along with the wall, 

there is no convection in the radial direction, therefore 

radial velocity becomes zero, 𝑈(𝑅, 𝑍, 𝑇) = 0. While we 

assume that the axial velocity has the following form due 

to Poiseuille flow, 

𝑊(𝑅, 𝑍, 𝑇) = 2𝑊0 (1 −
𝑅2

𝑎2),           (2) 

where 𝑊0 is the section-mean velocity, which is defined 

as  

𝑊0 =
2

𝑎2 ∫ 𝑊𝑅
𝑎

0
𝑑𝑅.                                    (3) 

 After substituting the above factors in Eq. (1) 

governing equation converts as 

𝜕𝐶(𝑅,𝑍,𝑇)

𝜕𝑇
+ 2𝑊0 (1 −

𝑅2

𝑎2)
𝜕𝐶(𝑅,𝑍,𝑇)

𝜕𝑍
=

𝐷 [
1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝐶(𝑅,𝑍,𝑇)

𝜕𝑅
) +

𝜕2𝐶(𝑅,𝑍,𝑇)

𝜕𝑍2 ].                                  (4) 

 On the tube wall for 𝑅 = 𝑎 , two reactions (Ng & 

Rudraiah, 2008), irreversible (for the part of the solute 

which is absorbed) and reversible (for the part of solute 

which is not absorbed by the tube wall and coming back 

to fluid) are taking place. For simplification these reaction 

equations are expressed as follows. 

 For irreversible reaction at 𝑅 = 𝑎, 

∂𝐶𝑠(𝑍,𝑇)

∂𝑇
= −𝐷

∂𝐶(𝑅,𝑍,𝑇)

∂𝑅
− Γ∗𝐶(𝑅, 𝑍, 𝑇),                          (5) 

 For reversible reaction at 𝑅 = 𝑎, 

 
∂𝐶𝑠(𝑍,𝑇)

∂𝑇
= 𝜅(𝛼∗𝐶(𝑅, 𝑍, 𝑇) − 𝐶𝑠(𝑍, 𝑇)),                 (6) 

where 𝜅 is the reversible phase exchange rate, 𝐶𝑠(𝑍, 𝑇) is 

the concentration of species absorbed by the tube wall, 

𝛼∗ =
𝐶𝑠

𝐶
 (Ng & Rudraiah 2008) is the phase partition 

coefficient, which produced rapid partition when 𝛼∗ ≤ 1, 

otherwise slower partition between the phases. In general, 

for both reversible and irreversible reactions, 𝛼∗should be 

equal to 0.5.  

 Furthermore, at 𝑅 = 0  the symmetric boundary 

condition (Ng and Rudraiah 2008) is defined as 

∂𝐶(𝑅,𝑍,𝑇)

∂𝑅
= 0, or 𝐶 = finite for 𝑅 = 0,                       (7) 

 While the initial condition at 𝑇 = 0 is defined as (Ng 

& Rudraiah, 2008) 

𝐶(𝑅, 𝑍, 0) = {
1   if 0 ≤ 𝑅 ≤ 𝑎, |𝑍| ≤ 𝑍𝑠

     0   otherwise                          
              

𝐶𝑠(𝑅, 𝑍, 0) = 0 for all 𝑍,                                          (8) 

where 𝑍𝑠  is the input length of the chemical solute at 

which a constant concentration of drug (in the case of 

pulmonary drug delivery system) is released in the banded 

region (|𝑍| ≤ 𝑍𝑠) as a source. Further, we discussed the 

periodic injections of the solute in section 3.6. 

2.2 Non-Dimensionalization of the Governing 

Equation 

 To make the equations dimensionless, we employ the 

following non-dimensional quantities. 

𝑐(𝑟, 𝑧, 𝑡) =
𝐶(𝑅,𝑍,𝑇)

𝐶0
, 𝑐𝑠(𝑟, 𝑧, 𝑡) =

𝐶𝑠(𝑍,𝑇)

𝑎𝐶0
, 𝑤 =

𝑊

𝑊0
= 2 (1 −

𝑅2

𝑎2) , 𝑟 =
𝑅

𝑎
, 𝑧 =

𝑍

𝑎2𝑊0/𝐷
, 𝑡 =

𝑇

𝑎2/𝐷
, 𝐷𝑎 =

𝜅𝑎2

𝐷
, 𝛼 =

𝛼∗

𝑎
, Γ =

𝑎Γ∗

𝐷
, 𝑃𝑒 =

𝑎𝑊0

𝐷
,        …………            (9) 

where 𝐶0 is the initial concentration. After using the above 

quantities, Eqs. (4)-(8) are written as follows: 

∂𝑐(𝑟,𝑧,𝑡)

∂𝑡
= −2(1 − 𝑟2)

∂𝑐(𝑟,𝑧,𝑡)

∂𝑧
+

1

𝑃𝑒2

∂2𝑐(𝑟,𝑧,𝑡)

∂𝑧2 +
1

𝑟

∂

∂𝑟
(𝑟

∂𝑐(𝑟,𝑧,𝑡)

∂𝑟
),                     (10) 

 Boundary conditions: 

 For irreversible reaction, 

∂𝑐𝑠(𝑟,𝑧,𝑡)

∂𝑡
= −

∂𝑐(𝑟,𝑧,𝑡)

∂𝑟
− Γ𝑐(𝑟, 𝑧, 𝑡),    𝑟 = 1                   (11) 

 For reversible reaction, 

𝜕𝑐𝑠(𝑟,𝑧,𝑡)

𝜕𝑡
= 𝐷𝑎(𝛼𝑐(𝑟, 𝑧, 𝑡) − 𝑐𝑠(𝑟, 𝑧, 𝑡)),   𝑟 = 1                  (12) 

 Symmetric boundary condition: 

∂𝑐(𝑟,𝑧,𝑡)

∂𝑟
= 0, 𝑟 = 0,                     (13) 

 Initial conditions: 

𝑐(𝑟, 𝑧, 0) = {
1   if 0 ≤ 𝑟 ≤ 1, |𝑧| ≤ 𝑧𝑠

     0   otherwise                          
  

𝑐𝑠(𝑟, 𝑧, 0) = 0 for all 𝑧,                                              (14) 

where Γ denotes the rate of solute absorbed irreversibly by 

the immobile phase, if Γ ≥ 1, then large amounts of solute 

are absorbed by the tissue wall in a short time. 𝐷𝑎, the 

Damköhler number indicates how phase exchange takes 

place. For 𝐷𝑎 ≥  1 the reaction rate is much faster than 

the diffusion rate (Lau & Ng, 2009; Zhang et al., 2009; 

Mazumder & Paul, 2012; Debnath et al., 2019, 2020), and 

𝑃𝑒  is the Peclet number, which expresses the speed at 

which fluid species are moving and is a ratio of the 

diffusion rate of species transport to the advection rate. If 

𝑃𝑒 is high, then the transport of species is influenced by 

both advection and diffusion. If 𝑃𝑒  is low, then the 

transport of species is dominated by diffusion (Debnath et 

al., 2019, 2020).  

 In the current analysis complete axial convection and 

complete radial diffusion is taking place. So, when the 

flow is dominated with convection, a sharp gradient is 

required (a sharp gradient refers to a rapid change in the 
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quantity being transported over a short distance) to 

enhance the convective transport and ensure that the 

transported quantity is efficiently distributed or exchanged 

within the system. Therefore, we calculated section mean 

concentration (Saini et al., 2014) of the mobile phase as 

𝑐̅ = 2 ∫ 𝑐𝑟
𝑎

0
𝑑𝑟.                          (15) 

 In addition, to calculate the axial moment of 

concentration distribution (Ng & Rudraiah, 2008) we used 

μ𝑛(𝑡) = ∫ 𝑧𝑛𝑐̅
∞

−∞
𝑑𝑧 (𝑛 = 0,1,2, ⋯ ),                       (16) 

here zeroth moment (μ0) gives the total mass (𝑐𝑡) of the 

mobile phase, i.e. μ0 = 𝑐𝑡 , and first moment (μ1) gives 

the center of  mass of the distribution, i.e. μ1 = μ0𝑐𝑚(𝑡) 

or 𝑐𝑚(𝑡) =
μ1

μ0
, while second movement (μ2)  gives 

variance of the distribution (Ng & Rudraiah, 2008) as 

follows 

σ2(𝑡) =
μ2

μ0
− 𝑐𝑚

2                        (17) 

 We used the Riemann sum formulation to calculate the 

integrals in Eqs. (15) and (16) so that variance of the 

distribution in Eq. (17) can be calculated easily. 

 Further, to accurately measure the dispersion of 

chemical species, three effective transfer coefficients must 

be analyzed. The depletion coefficient (𝐷0)  is a measure 

of the reaction of the solute against the tube wall, the 

advection coefficient (𝐷1) is a measure of the velocity of 

the solute, and the dispersion coefficient (𝐷2) is a measure 

of both molecular diffusion and fluid velocity 

(Sankarasubramanian & Gill, 1973; Ng & Rudraiah, 

2008). The relation between total mass (𝑐𝑡) and time gives 

the depletion coefficient 𝐷0 (Ng & Rudraiah, 2008) 

𝑐𝑡(𝑡) = 𝑐𝑡
0𝑒𝑥𝑝 (− ∫ 𝐷0

𝑡

0
𝑑𝑡),                     (18) 

where 𝑐𝑡
0 = 2𝑧𝑠   is the initial concentration of solute 

dissolved in the mobile phase. Then, we can find the 

advection coefficient 𝐷1  at the center of mass, as the 

chemical species move according to the advection velocity 

of the flowing fluid (Ng & Rudraiah, 2008): 

𝐷1 =
𝑑𝑐𝑚

𝑑𝑡
.                        (19) 

 Finally, we can obtain the dispersion coefficient 𝐷2 

from the change in rate of variance (Ng & Rudraiah, 2008) 

as 

𝐷2 =
1

2

𝑑σ2

𝑑𝑡
.                     (20) 

2.3 Numerical Solution Algorithm 

 To solve the non-dimensional governing equations 

with boundary conditions, a computational strategy is 

necessary. 

 A physical problem using a computational grid with 

domain Ω𝑖𝑘  is depicted in Figure 2. The rectangular cells 

of the computational grid have sizes of Δ𝑟 and Δ𝑧, and 

their centers are (𝑟𝑖 = (𝑖 − 0.5)Δ𝑟,  𝑧𝑘 = (𝑘 − 0.5)Δ𝑧) , 

where 𝑖 = 1, ⋯ , 𝑁𝑟  and 𝑘 = 1, ⋯ , 𝑁𝑧 .  𝑁𝑟. The number of 

cells in the r- and z- directions, respectively, are  

 

Fig. 2 Schematic illustration of (a) physical problem 

and (b) computational grid 

 

𝑁𝑟  and 𝑁𝑧 . Diamond symbols (◆ , ◆ , ◆ ) are ghost 

points. Three different color symbols are used for three 

different boundary conditions. Let 𝑐𝑖𝑘
𝑛 = 𝑐(𝑟𝑖 , 𝑧𝑘, 𝑡𝑛) and 

𝑐𝑠,𝑘
𝑛 = 𝑐𝑠(𝑧𝑘 , 𝑡𝑛), where 𝑡𝑛 = 𝑛Δ𝑡  and Δ𝑡  is a time step. 

The discrete concentration fields 𝑐𝑖𝑘
𝑛  and 𝑐𝑥,𝑘

𝑛  are located 

at cell centers and boundary edges. The completely 

explicit Euler technique is used in the time-stepping 

operation. At the start of each time step, provided 𝑐𝑖𝑘
𝑛  and 

𝑐𝑠,𝑘
𝑛 , we want to find 𝑐𝑖𝑘

𝑛+1 and 𝑐𝑠,𝑘
𝑛+1. First, we compute the 

values at the ghost points. We consider 𝑐𝑁𝑟+1,𝑘
𝑛  for 𝑘 =

1, … , 𝑁𝑧 . Consider the following equation, which is 

derived from the boundary conditions defined in Eqs. (11) 

and (12). 

−
∂𝑐

∂𝑟
− Γ𝑐 = 𝐷𝑎(α𝑐 − 𝑐𝑠).                          (21) 

 Then, we discretize Eq. (21) as 

𝑐𝑁𝑟+1,𝑘
𝑛 −𝑐𝑁𝑟,𝑘

𝑛

Δ𝑟
= −Γ

𝑐𝑁𝑟+1,𝑘
𝑛 +𝑐𝑁𝑟,𝑘

𝑛

2
− 𝐷𝑎 (α

𝑐𝑁𝑟+1,𝑘
𝑛 +𝑐𝑁𝑟,𝑘

𝑛

2
−

𝑐𝑠,𝑘
𝑛 ).                                                                             (22) 

 Equation (22) can rewrite as 

(
1

Δ𝑟
+

Γ

2
+

α

2
𝐷𝑎) 𝑐𝑁𝑟+1,𝑘

𝑛 =
𝑐𝑁𝑟,𝑘

𝑛

Δ𝑟
−

Γ

2
𝑐𝑁𝑟,𝑘

𝑛 − 𝐷𝑎 (
α

2
𝑐𝑁𝑟,𝑘

𝑛 −

𝑐𝑠,𝑘
𝑛 ).                                                                              (23) 

 Now, we can obtain the 𝑐𝑁𝑟+1,𝑘
𝑛 on the ghost points as 

𝑐𝑁𝑟+1,𝑘
𝑛 = [

𝑐𝑁𝑟,𝑘
𝑛

Δ𝑟
−

Γ

2
𝑐𝑁𝑟,𝑘

𝑛 − 𝐷𝑎 (
𝛼

2
𝑐𝑁𝑟,𝑘

𝑛 − 𝑐𝑠,𝑘
𝑛 )] / (

1

Δ𝑟
+

Γ

2
+

𝛼

2
𝐷𝑎)  

 = [(
1

Δ𝑟
−

Γ

2
−

𝛼𝐷𝑎

2
) 𝑐𝑁𝑟,𝑘

𝑛 + 𝐷𝑎𝑐𝑠,𝑘
𝑛 ] / (

1

Δ𝑟
+

Γ

2
+

𝛼

2
𝐷𝑎).    ……………………………………..              (24) 

 In Eq. (24) for the numerical tests, we use the 

parameters satisfying (1/Δ𝑟 − Γ/2 − α𝐷𝑎/2) ≥ 0. Next, 

we compute the updated value of 𝑐𝑠,𝑘
𝑛+1 for the next time 

step update. Let us consider the following equation from 

Eq. (12) 

∂𝑐𝑠(𝑧,𝑡)

∂𝑡
= 𝐷𝑎(α𝑐(1, 𝑧, 𝑡) − 𝑐𝑠(𝑧, 𝑡)).                    (25) 

(a) (b) 
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We discretize Eq. (25) as 

𝑐𝑠,𝑘
𝑛+1−𝑐𝑠,𝑘

𝑛

Δ𝑡
= 𝐷𝑎 (α

𝑐𝑁𝑟+1,𝑘
𝑛 +𝑐𝑁𝑟,𝑘

𝑛

2
− 𝑐𝑠,𝑘

𝑛 ).                (26) 

 Rewriting Eq. (26), we have 

𝑐𝑠,𝑘
𝑛+1 = 𝑐𝑠,𝑘

𝑛 + Δ𝑡𝐷𝑎 (α
𝑐𝑁𝑟+1,𝑘

𝑛 +𝑐𝑁𝑟,𝑘
𝑛

2
− 𝑐𝑠,𝑘

𝑛 ),              (27) 

which will be used in the next (𝑛 + 1) −time step update. 

We apply an explicit Euler method with an upwind 

method in Eq. (10), such that 𝑐𝑖𝑘
𝑛+1 ≥ 0: 

𝑐𝑖𝑘
𝑛+1−𝑐𝑖𝑘

𝑛

Δ𝑡
+ 2(1 − 𝑟𝑖

2)
𝑐𝑖𝑘

𝑛 −𝑐𝑖,𝑘−1
𝑛

Δ𝑧
=

𝑟
𝑖+

1
2

𝑟𝑖
(

𝑐𝑖+1,𝑘
𝑛 −𝑐𝑖𝑘

𝑛

Δ𝑟2 ) −
𝑟

𝑖−
1
2

𝑟𝑖
 

(
𝑐𝑖𝑘

𝑛 −𝑐𝑖−1,𝑘
𝑛

Δ𝑟2 ) +
𝑐𝑖,𝑘+1

𝑛 −2𝑐𝑖𝑘
𝑛 +𝑐𝑖,𝑘−1

𝑛

𝑃𝑒2Δ𝑧2 , for 1 ≤ 𝑖 ≤ 𝑁𝑟 , 1 ≤ 𝑘 ≤

𝑁𝑧 .                                                                                (28) 

 We can rewrite Eq. (28) as 

𝑐𝑖𝑘
𝑛+1 = 𝑐𝑖𝑘

𝑛 − Δ𝑡 [2(1 − 𝑟𝑖
2)

𝑐𝑖𝑘
𝑛 −𝑐𝑖,𝑘−1

𝑛

Δ𝑧
+

𝑟
𝑖+

1
2

𝑟𝑖
(

𝑐𝑖+1,𝑘
𝑛 −𝑐𝑖𝑘

𝑛

Δ𝑟2 ) −
𝑟

𝑖−
1
2

𝑟𝑖
(

𝑐𝑖𝑘
𝑛 −𝑐𝑖−1,𝑘

𝑛

Δ𝑟2 ) +
𝑐𝑖,𝑘+1

𝑛 −2𝑐𝑖𝑘
𝑛 +𝑐𝑖,𝑘−1

𝑛

𝑃𝑒2Δ𝑧2 ] , for 1 ≤ 𝑖 ≤ 𝑁𝑟 , 1 ≤

𝑘 ≤ 𝑁𝑧 .                                                                         (29) 

We fix the ghost point value at 𝑧 = 𝐿  and use zero 

Neumann boundary condition at 𝑧 = 𝐻 , i.e., 𝑐𝑖,0
𝑛 =

0, 𝑐𝑖,𝑁𝑧+1
𝑛 = 𝑐𝑖,𝑁𝑧

𝑛 . We note that 𝑟1/2 = 0 by definition and 

𝑐0𝑘
𝑛 = 𝑐1𝑘

𝑛  by the symmetric condition at 𝑟 = 0. Figure 3 

shows where the computational domain is placed in the 

circular tube. 

 From the above discretization process, we calculate the 

concentration of solute and then we can calculate section-

mean concentration, moments of concentration, and 

variance of distribution by using Eqs (15), (16) and (17), 

respectively. After that, we can obtain various 

transportation coefficients such as the depletion 

coefficient (𝐷0), the advection coefficient (𝐷2), and the 

dispersion coefficient (𝐷1)  by using the below-defined 

discretization process 

𝐷0
𝑛 =

log 𝑐𝑡
𝑛−log 𝑐𝑡

𝑛+1

Δ𝑡
,  𝐷1

𝑛 =
𝑐𝑚

𝑛+1−𝑐𝑚
𝑛

Δ𝑡
,  𝐷2

𝑛 =
(𝜎2)

𝑛+1
−(𝜎2)

𝑛

Δ𝑡
.  

                                             (30) 

 Moreover, to obtain phase lock condition we need to 

follow section 3.6. 

2.4 Stability Analysis 

 In this section, we examine the stability of the 

proposed numerical scheme to solve the governing 

equation computationally. Equation (29) can be rewrite as 

follows: 

 For 1 ≤ 𝑖 ≤ 𝑁𝑟  and 1 ≤ 𝑘 ≤ 𝑁𝑧, 

𝑐𝑖𝑘
𝑛+1 = (1 − 2(1 − 𝑟𝑖

2)
Δ𝑡

Δ𝑧
−

Δ𝑡

Δ𝑟2 (
𝑟

𝑖+
1
2

+𝑟
𝑖−

1
2

𝑟𝑖
) −

2Δ𝑡

𝑃𝑒2Δ𝑧2) 𝑐𝑖𝑘
𝑛 +

Δ𝑡

Δ𝑟2 (
𝑟

𝑖−
1
2

𝑟𝑖
) 𝑐𝑖−1,𝑘  +

Δ𝑡

Δ𝑟2 (
𝑟

𝑖+
1
2

𝑟𝑖
) 𝑐𝑖+1,𝑘 +

(
Δ𝑡

𝑃𝑒2Δ𝑧2 + 2(1 − 𝑟𝑖
2)

Δ𝑡

Δ𝑧
) 𝑐𝑖,𝑘−1 +

Δ𝑡

𝑃𝑒2Δ𝑧2 𝑐𝑖,𝑘+1.           (31) 

 Let us assume 0 ≤ 𝑐𝑖𝑘
𝑛 ≤ 1 , then the following 

inequality holds by the triangular inequality. 

 

Fig. 3 Schematic of axis symmetric with 

computational domain 

 

𝑐𝑖𝑘
𝑛+1 ≤ |1 − 2(1 − 𝑟𝑖

2)
Δ𝑡

Δ𝑧
−

Δ𝑡

Δ𝑟2 (
𝑟

𝑖+
1
2

+𝑟
𝑖−

1
2

𝑟𝑖
) −

2Δ𝑡

𝑃𝑒2Δ𝑧2| 𝑐𝑖𝑘
𝑛 +

Δ𝑡

Δ𝑟2 (
𝑟

𝑖−
1
2

𝑟𝑖
) 𝑐𝑖−1,𝑘  +

Δ𝑡

Δ𝑟2 (
𝑟

𝑖+
1
2

𝑟𝑖
) 𝑐𝑖+1,𝑘 +

(
Δ𝑡

𝑃𝑒2Δ𝑧2 + 2(1 − 𝑟𝑖
2)

Δ𝑡

Δ𝑧
) 𝑐𝑖,𝑘−1 +

Δ𝑡

𝑃𝑒2Δ𝑧2 𝑐𝑖,𝑘+1.          (32) 

 Let us define the maximum value of 𝑐𝑖𝑘
𝑛  on the 

extended domain with boundary ghost points as 

𝑐max
𝑛 =  max

0≤𝑖≤𝑁𝑟+10
≤𝑘≤𝑁𝑧+1

𝑐𝑖𝑘
𝑛 .                            (33) 

 Then, from Eq. (32), 

𝑐𝑖𝑘
𝑛+1 ≤ (|1 − 2(1 − 𝑟𝑖

2)
Δ𝑡

Δ𝑧
−

Δ𝑡

Δ𝑟2 (
𝑟

𝑖+
1
2

+𝑟
𝑖−

1
2

𝑟𝑖
) −

2Δ𝑡

𝑃𝑒2Δ𝑧2| +
Δ𝑡

Δ𝑟2 (
𝑟

𝑖−
1
2

𝑟𝑖
)  +

Δ𝑡

Δ𝑟2 (
𝑟

𝑖+
1
2

𝑟𝑖
) + (

Δ𝑡

𝑃𝑒2Δ𝑧2 + 2(1 −

𝑟𝑖
2)

Δ𝑡

Δ𝑧
) +

Δ𝑡

𝑃𝑒2Δ𝑧2 ) 𝑐max
𝑛 .                               (34) 

 Suppose that the following condition is guaranteed. 

1 − 2(1 − 𝑟𝑖
2)

Δ𝑡

Δ𝑧
− Δ𝑡 (

𝑟
𝑖+

1
2

+𝑟
𝑖−

1
2

Δ𝑟2𝑟𝑖
+

2

𝑃𝑒2Δ𝑧2) ≥ 0.         (35) 

 Then, 𝑐𝑖𝑘
𝑛+1 is bounded as 

0 ≤ 𝑐𝑖𝑘
𝑛+1 ≤ 𝑐max

𝑛 .                 (36) 

 The condition (35) can be rewritten as 

2Δ𝑡 (
1−𝑟𝑖

2

Δ𝑧
+

1

Δ𝑟2 +
1

𝑃𝑒2Δ𝑧2) ≤ 1.                (37) 

 Here, 0 ≤ 𝑟𝑖 ≤ 1, therefore, condition (37) is to be as 

follows: 

Δ𝑡 ≤ 1/ (
2

Δ𝑧
+

2

Δ𝑟2 +
2

𝑃𝑒2Δ𝑧2).                (38) 

 We should show the values are also bounded at the 

ghost points: 𝑘 = 0, 𝑘 = 𝑁𝑧 + 1, 𝑖 = 0 , and 𝑖 = 𝑁𝑟 + 1 . 

Because 𝑐𝑖,0 = 0, 𝑐𝑖,𝑁𝑧+1 = 𝑐𝑖,𝑁𝑧
, and 𝑐0,𝑘 = 𝑐1,𝑘, we only 

consider 𝑐𝑁𝑟+1,𝑘  in Eq. (24). Applying explicit Euler 

method to Eq. (12) we have 

𝑐𝑠,𝑘
𝑛+1−𝑐𝑠,𝑘

𝑛

Δ𝑡
= 𝐷𝑎(𝛼𝑐𝑠,𝑘

𝑛 − 𝑐𝑠,𝑘
𝑛 ),  
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𝑐𝑠,𝑘
𝑛+1 = 𝑐𝑠,𝑘

𝑛 + 𝐷𝑎(𝛼𝑐𝑖𝑘
𝑛 − 𝑐𝑠,𝑘

𝑛 )Δ𝑡 ≤ 𝑐𝑠,𝑘
𝑛 + 𝐷𝑎(𝛼 −

𝑐𝑠,𝑘
𝑛 )Δ𝑡.                    (39) 

 In Eq. (39), we can obtain the following time step 

restriction 

Δ𝑡 ≤
1

𝐷𝑎
,                  (40) 

which assures that 𝑐𝑠,𝑘
𝑛+1 ≤ α, for 𝑛 = 0,1,2, ⋯. Applying 

the time restriction (40) to Eq. (24), we derive the 

following inequality. 

𝑐𝑁𝑟+1,𝑘
𝑛 ≤ (

𝑐𝑁𝑟,𝑘
𝑛

Δ𝑟
−

Γ

2
𝑐𝑁𝑟,𝑘

𝑛 +
𝛼

2
𝐷𝑎) / (

1

Δ𝑟
+

Γ

2
+

𝛼

2
𝐷𝑎)                                                                                      (41) 

 Because 0 ≤ cNr,k
n ≤ 1, the numerical solution is also 

bounded on the ghost points 0 ≤ cNr+1,k
n ≤ 1 . 

Therefore, 0 ≤ cmax
n ≤ 1 . From the conditions (38) and 

(40), we can take time step restriction as 

Δt ≤ min {1/ (
2

Δz
+

2

Δr2 +
2

Pe2) ,
1

Da
}.               (42) 

 Using Eq. (36), if the time step Δt  satisfies the 

restriction condition (42), the numerical solution cik
n+1 is 

stable and bounded, i.e., 

𝟎 ≤ 𝐜𝐢𝐤
𝐧+𝟏 ≤ 𝟏.                     (43) 

3.  COMPUTATIONAL EXPERIMENTS 

 In computational experiments we use zs = 0.05 and 

Pe = 1000 throughout the paper. 

3.1 Convergence Test 

 To check the spatial convergence of the numerical 

solution, we performed the convergence test presented in 

Fig. 4. Figure 4 shows the concentration of numerical 

results of c̅(z) , c(0, z) , and  c(1, z)  and for various 

number of grid points Nr and Nz and at t = 0.1. In the test, 

we use a sufficiently small-time step Δt =  0.0001 in the 

computational domain Ω = (0,1) × (−0.1,0.9). From the 

result of Fig. 4, the numerical results converge to solid line 

(Nr = 50, Nz = 700). Therefore, we use grid size  Nr =
50, Nz = 700 throughout the analysis. 

 3.2 Comparison Test with the Previous Result 

 For computational validation of the scheme, we 

performed a comparison between our results and those in 

Ng and Rudraiah (2008). Because we do not know exactly 

what scheme and conditions are used Ng and Rudraiah 

(2008), hence we collected the data from the figure and 

performed the comparison between the results produced 

by the present scheme at grid size 𝑁𝑟 = 50, 𝑁𝑧 = 700 and 

data of Ng and Rudraiah (2008). 

 Figure 5 shows the comparison of the area mean 

concentration 𝑐̅ of the mobile phase, concentration 𝑐 at the 

center (𝑟 = 0) , and at the wall (𝑟 = 1 ) of the tube, 

respectively, in Fig. 5 (a), (b), and (c) at time 𝑡 = 0.5, 

absorption rate Γ = 5, phase partition number 𝛼 = 0.05, 

and Damkhöler number 𝐷𝑎 = 1. As shown in the figure 

all the concentrations first increased with time and after a 

particular point all the concentrations decreased with time 

gradually. However, at a very short time, 𝑡 = 0.5 , the 

concentration of the solute at the center of the tube 

(𝑐(0, 𝑧, 0.5))  has higher values, while at the same time 

area mean concentration (𝑐̅)  of the solute inside the 

mobile phase and concentration at the center of the tube 

(𝑐(1, 𝑧, 0.5))  have lower values. Physically, early (𝑡 =

0.5) the concentration of the solute at the center of the tube 

is high. At this time, the solute is dispersed throughout the 

entire area, so less solute reaches the tube wall; therefore, 

𝑐(1, 𝑧, 0.5)  and 𝑐̅  are lesser than 𝑐(0, 𝑧, 0.5).  The same 

phenomenon applies to the results of Ng and Rudraiah 

(2008). Furthermore, as shown in the figure, there is very 

little difference between the present results and those in 

Ng and Rudraiah (2008).  

 Through this analysis, we can say that our scheme and 

grid size is computationally compatible with the 

previously published study Ng and Rudraiah (2008). 

3.3 Analysis of Various Transport Coefficients 

 Many researchers (Gill & Sakarasubramanian, 1970; 

Shankar & Lenhoff, 1991; Ng & Rudraiah, 2008; Das et 

al., 2021) examined the effect of the transport coefficient. 

We also shed light on the behavior of time-dependent 

transport coefficients on solute dispersion for some cases 

with Γ = 5, 0.5, 0.05, 𝛼 = 0.05, and 𝐷𝑎 = 1. 

 
(a)                                                    (b)                                                                (c) 

Fig. 4 Numerical results of (a) �̅�(𝒛, 𝟎. 𝟏), (b) 𝒄(𝟎, 𝒛, 𝟎. 𝟏), and (c) 𝒄(𝟏, 𝒛, 𝟎. 𝟏) for four cases 𝑵𝒓 = 𝟐𝟎, 𝑵𝒛 = 𝟐𝟖𝟎 

(dash-dotted line); 𝑵𝒓 = 𝟑𝟎, 𝑵𝒛 = 𝟒𝟐𝟎 (dotted line); 𝑵𝒓 = 𝟒𝟎, 𝑵𝒛 = 𝟓𝟔𝟎 (dashed line); and 𝑵𝒓 = 𝟓𝟎, 𝑵𝒛 = 𝟕𝟎𝟎 

(solid line) 
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(a)                                                               (b)                                                                (c) 

Fig. 5 Comparison of results produced by present study and Ng and Rudraiah (2008). (a) for area average 

concentration of mobile phase (�̅�), (b) concentration 𝒄 at center (𝒓 = 𝟎) and (𝒄) at the wall (𝒓 = 𝟏) for 𝚪 = 𝟓, 𝛂 =
𝟎. 𝟎𝟓, and  𝑫𝒂 = 𝟏 at 𝒕 = 𝟎. 𝟓 

 

 

(a)                                                               (b)                                                             (c) 

Fig. 6 (a) Depletion (𝑫𝟎), (b) advection (𝑫𝟏), and (c) Dispersion (𝑫𝟐) of chemical species with different value of 

absorption rate 𝚪 = 𝟎. 𝟎𝟓, 𝟎. 𝟓, 𝟓 at 𝛂 = 𝟎. 𝟎𝟎𝟓, and 𝑫𝒂 = 𝟏 

 

 Figure 6(a) shows the temporal variation of 𝐷0. At the 

early stage, values of 𝐷0 are very high for all values of Γ, 

however, by the time of increasing, it attained a non-

transient state after a very long time. The physical 

implication of this phenomenon is that once the solute is 

injected, it initially moves at fluid velocity only by 

convection but after a significant amount of time, solute 

transport is affected by both solute advection and 

molecular diffusion. In addition, irreversible wall 

reactions cause solutes to migrate towards the tube wall 

where they are consumed and at the tube wall, the solute 

undergoes a reversible reaction that affects the overall 

process. However, after a longer period, a stationary 

equilibrium begins between molecular diffusion and wall 

reactions. Consequently, increasing the value of Γ 

depletes more solutes from the system, leading to an 

increase in 𝐷0. However, the speed at which the solute in 

the mobile phase is being removed is primarily controlled 

by the short-term value of 𝐷0  and the transport process 

stops long before the coefficients reach stable values. 

 Moreover, the effect of reversible and irreversible 

reactions on 𝐷1 and 𝐷2 is illustrated in Fig. 6 (b) and (c) in 

the context of smaller and larger values of Γ. For smaller 

Γ = 0.05, a steady state is reached quickly in both 𝐷1 and 

𝐷2. However, for Γ = 5, there is a significant change in 𝐷1 

(see Fig. 6 (b), which drops suddenly to a minimum of 

−0.65),  and it gradually stabilizes around zero. 

Furthermore, the same change is found in 𝐷2, as depicted 

in Fig. 6 (c), where 𝐷2  coefficient reaches a peak value 

and then declines sharply before stabilizing at zero. 

 In the process of phase exchange, negative advection 

and dispersion can be attributed to a specific condition 

known as ‘back-mixing’. This phenomenon occurs when 

solutes are absorbed by surfaces or walls within the system 

and are subsequently released back into the flowing fluid. 

The delayed release of these solutes can result in their 

movement against the main flow direction, leading to 

negative advection and dispersion in the fluid. 

3.4 Analysis of Concentration Distribution between 

Mobile and Immobile Phases with Absorption Rate (𝚪)  

 In this section, we performed an analysis of 

concentration distribution with area average concentration 
(𝑐̅)  distribution in mobile phase, concentration (𝑐) 

distribution at the center (𝑟 = 0) of the tube, and at the 

wall ( 𝑟 = 1 ) of the tube together-with concentration 

distribution in immobile phase (𝑐𝑠). 

 For wall absorption we took values from high 

absorption rate to low absorption rate as Γ = 5, 0.5, and 

0.05  with a fixed value of mobile-immobile phase 

partitioning number 𝛼 = 0.05  and 𝐷𝑎 = 1  at Pe=1000 

then we calculated distribution curves at various time 

levels 𝑡 = 0.1, 𝑡 = 0.3, and 𝑡 = 0.5 with two-dimensional 

and three-dimensional plots. Each figure has five sub 

figures as shown in Figs. 7-9. 
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Fig. 7 (a) Area average concentration (�̅�), together with concentration (𝒄) at center (𝒓 = 𝟎) and at the wall (𝒓 =
𝟏) for mobile phase, (b) concentration for immobile phase (𝒄𝒔), and (c) concentration distribution profiles at 𝒕 =

𝟎. 𝟏, 𝒕 = 𝟎. 𝟑, and 𝒕 = 𝟎. 𝟓 for 𝚪 = 𝟓, 𝛂 = 𝟎. 𝟎𝟓, 𝐚𝐧𝐝 𝑫𝒂 = 𝟏 

 

 Figure 7 represents distribution of chemical solute for 

Γ = 5, 𝛼 = 0.05, and 𝐷𝑎 = 1.  At very small time, 𝑡 =
0.1, when chemical solute was just injected, the value of 

concentration was very high at the center of the tube as 

compared to boundaries of the tube due to advection (see, 

(a) and axisymmetric subplot (c)) but as time increases 

gradually up to 0.5  due to diffusion the value of 

concentration decreases abruptly in the fluid (mobile 

phase) and absorbed quickly by the tube wall (immobile 

phase) because the reversible wall retention (𝐷𝑎 = 1)is 

not effective, as shown in  subplot (b). 

 While, in Fig. 8 when we decreased the value of Γ =
0.5, at 𝛼 = 0.05, 𝐷𝑎 = 1 , we found that the absorption 

through the immobile phase (see, subplot (b)) was slightly 

slower than the reversible retention (𝐷𝑎 = 1) at the wall, 

which resulted in solute accumulation on the tube wall 

over a long period of time and we got quantitatively high 

value in subplot (b) and a hump on the tube wall (see, 

subplot (a), and (c). Then, we calculated the distribution 

of solute inside the fluid and capacity of absorption by the 

tube wall for a very small absorptionrate Γ = 0.05 at 𝛼 =
0.05, and 𝐷𝑎 = 1  in Fig. 9 and found very slow 

absorption and high retention by the immobile phase. 

Here, as compared to the above two cases large amount of 

solute accumulated along the wall and is not absorbed by 

the tube wall (see, subplot (a), (b)), however, dispersion 

takes place as time increases (see, subplot (c)).  

 Hence, the concentration of Figs 8(b) and 9(b) is larger 

than Fig. 7(b). Physiologically, this analysis shows as soon 

as we injected the drug inside the tube, if the absorption 

rate is high then the injected drug will be depleted from 

fluid and absorbed through the wall in a very short time 

but if the absorption rate is very low, drug absorption 

through the tube wall will become down and drug will be 

accumulated along the walls. 

3.5 Concentration Distribution with or Without 

Reversible and Irreversible Reactions 

 In this section, we explore how reversible and 

irreversible phase changes affect the concentration 

distribution between mobile and immobile phases. Figure 

10 (a)-(c) depict the individual effect of 𝐷𝑎, 𝛼 , and Γ 

respectively, while Fig. 10 (d) illustrates the combined 

effect of 𝐷𝑎, 𝛼, and Γ concerning some cases as shown in 

Table 1. Case 1 is for no reaction, cases 2-4 represents the 

influence of reversible phase exchange or 𝐷𝑎, cases 4 and 

7 represents the influence of partition number (𝛼) cases 2 

and 6 show the effect of irreversible absorption (Γ). 

 Figure 10 (a) shows the behavior of phase exchange 

for 𝐷𝑎 = 0, 0.1, 5, 10  a very small value of 𝛼 = 0.005 , 

and Γ = 0.05 for 𝑡 = 0.5  on area average concentration 

distribution of mobile phase. When 𝐷𝑎 = 0, there is no 

reversible phase exchange was performed and the solute 

resides inside the mobile phase only; while as 𝐷𝑎 

increased from 0 to 10, the magnitude of the area average 

concentration decreases as well. This is because as  

the phase exchange rate increases, more solute moves  

  

 

(a) (b) 

(c) 
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Fig. 8 (a) Area average concentration (�̅�), together with concentration (𝒄) at center (𝒓 = 𝟎) and at the wall (𝒓 =
𝟏) for mobile phase, (b) concentration for immobile phase (𝒄𝒔), and (c) concentration distribution profiles at 𝒕 =

𝟎. 𝟏, 𝒕 = 𝟎. 𝟑, and 𝒕 = 𝟎. 𝟓 for 𝚪 = 𝟎. 𝟓, 𝛂 = 𝟎. 𝟎𝟓, 𝐚𝐧𝐝 𝑫𝒂 =1 

 

 

Fig. 9 (a) Area average concentration (�̅�), together with concentration (𝒄) at center (𝒓 = 𝟎) and at the wall (𝒓 =
𝟏) for mobile phase, (b) concentration for immobile phase (𝒄𝒔), and (c) concentration distribution profiles at 𝒕 =

𝟎. 𝟏, 𝒕 = 𝟎. 𝟑, 𝐚𝐧𝐝 𝒕 = 𝟎. 𝟓 for 𝚪 = 𝟎. 𝟎𝟓, 𝛂 = 𝟎. 𝟎𝟓, 𝐚𝐧𝐝 𝑫𝒂 = 𝟏 

(a) (b) 

(c) 

(a) (b) 

(c) 
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Fig. 10 Area average concentration (�̅�) of mobile phase for (a) Da = 0, 0.1, 5, 10 at α = 0.005 & Γ = 0.05 (b) α = 0, 

0.005, 0.5, 1 at Da = 0.1 & Γ = 0.05, and (c) Γ = 0, 0.05, 0.5, 5 at α = 0.005 & Da = 0.1 together-with (d) 

Comparison of various cases at t = 0.5 

 

Table 1 Various cases Ng and Rudraiah (2008)used to 

analyze the distribution of species inside the tube 

Cases 𝐷𝑎 𝛼 𝛤 Remarks 

1 0 0 0 No reaction 

2 0.1 0.5 0.5 Slow phase exchange rate 

3 5 0.5 0.5 Moderate phase exchanger rate 

4 10 0.5 0.5 Fast phase exchange rate 

5 0.1 1 0.5 Slow partition between the Phases 

6 0.1 0.5 5 Fast absorption rate 

7 10 0.1 0.5 Fast partition between the phases 

 

from the mobile phase to the immobile phase then it is 

absorbed into the tube wall. 

 After that, the influence of phase partition ratio 𝛼 on 

mobile phase area average concentration is shown in Fig. 

10 (b) for 𝛼 = 0, 0.005, 0.5, 1 at 𝐷𝑎 = 0.1, Γ =
0.05, and 𝑡 = 0.5. It is illustrated that if 𝛼 = 0 then the 

impact of only irreversible wall absorption can be seen, 

and if 𝛼 < 0.5 then most of the cloud remains in the 

mobile phase and very slow absorption of solute takes 

place, while if 0.5 < 𝛼 ≤ 1  then the effect of slow 

reversible reaction was found since most of the solute is 

absorbed by immobile phase. While, at equilibrium, both 

reversible and irreversible reactions proceed with 𝛼 =
0.5.  When the value of 𝛼  is equal to 0.5, the phase 

exchange mechanism becomes physically faster, which 

means that the average concentration of the mobile phase 

will decrease.  

 Furthermore, the effect of wall absorption rate is 

calculated on the area average concentration of mobile 

phase in Fig. 10 (c) for Γ = 0, 0.05, 0.5, 5, at Da = 0.1, α = 

0.005, and t = 0.5. We observed, at Γ = 0, only reversible 

wall retention affects the distribution of concentration. 

While, as the magnitude of Γ increases up to 5 (0 < Γ < 5) 

significant value of concentration is maintained by the 

mobile phase, but after that as the magnitude of Γ 

increases (Γ ≥ 5) the concentration cloud drops abruptly. 

The reason behind this phenomenon is, as soon as the 

solute is injected into the fluid flow, it flies with the 

velocity of fluid by the act of advection and reaches the 

tube wall where due to diffusion it performs chemical 

reaction with the tube wall. The physical significance of 

this result is that the large amount of solute comes back to 

the mobile phase if absorption through the tube wall is 

slow, while reduction of solute is found inside the mobile 

phase for a large absorption rate. 

 Furthermore, Fig. 10(d) depicted the axial distribution 

of the solute in mobile phase for seven different 

conditions. As shown in Fig. 10, case 1 is no reaction case. 

For cases 1, 2 and 5-7 the distribution curve is a single 

peak, while the additional peak has emerged in cases 3, 

and 4, also area under the curve is significantly decreased 

in cases 3, 4, and 6 due to high reversible phase exchange 

(𝐷𝑎) and irreversible absorption rate (Γ), respectively   

(a) (b) 

(c) (d) 
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Fig. 11 Results for 𝟏𝟎𝟎𝟎 𝚫𝒕 periodic injections. (a) Area average concentration (�̅�), together with concentration 

(𝒄) at center (𝒓 = 𝟎) and at the wall (𝒓 = 𝟏) for mobile phase, (b) concentration for immobile phase (𝒄𝒔), and (c) 

concentration distribution profiles at 𝒕 = 𝒕∗, 𝒕 = 𝒕∗ + 𝟐𝟓𝟎𝚫𝒕, 𝒕 = 𝒕∗ + 𝟓𝟎𝟎𝚫𝒕, 𝐚𝐧𝐝 𝒕 = 𝒕∗ + 𝟕𝟓𝟎𝚫𝒕 

 

 
Fig. 12 Results for 𝟐𝟎𝟎𝟎 𝚫𝒕 periodic injections. (a) Area average concentration (�̅�), together with concentration 

(𝒄) at center (𝒓 = 𝟎) and at the wall (𝒓 = 𝟏) for mobile phase, (b) concentration for immobile phase (𝒄𝒔), and (c) 

concentration distribution profiles at 𝒕 = 𝒕∗, 𝒕 = 𝒕∗ + 𝟓𝟎𝟎𝚫𝒕, 𝒕 = 𝒕∗ + 𝟏𝟎𝟎𝟎𝚫𝒕, 𝐚𝐧𝐝 𝒕 = 𝒕∗ + 𝟏𝟓𝟎𝟎𝚫𝒕 

 

 Also, in cases 4 both the reversible and irreversible 

reactions are took place at α = 0.5; while in cases 5 and 7 

value of α is 1 and 0.1 which cause either irreversible 

reaction or reversible, respectively. Physiologically, it is 

noted that for a high magnitude absorption rate long time 

dispersion will not be obtained since the mass is depleted 

by the immobile phase very fast. 

3.6 Periodic Injection 

 For periodic injection we used the diffusion model (Ng 

& Rudraiah, 2008; Kori & Pratibha, 2020, 2022) as 

defined in Eq. (10) with the periodic injection condition as 

𝑐(𝑟, 𝑧, 𝑡) = 1, if 0 ≤ 𝑟 ≤ 1, |𝑧| ≤ 𝑧𝑠,                          (44) 

 

(a) (b) 

(c) 

(a) (b) 

c) 
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Fig. 13 Results for periodic injections condition: Eq. (45). (a) Area average concentration (�̅�), together with 

concentration (c) at center (𝒓 = 𝟎) and at the wall (𝒓 = 𝟏) for mobile phase, (b) concentration for immobile 

phase (𝒄𝒔), and (c) concentration distribution profiles at 𝒕 = 𝒕∗, 𝒕 = 𝒕∗ + 𝟐𝟎𝟎𝟎𝚫𝒕, 𝒕 = 𝒕∗ + 𝟒𝟎𝟎𝟎𝚫𝒕, 𝐚𝐧𝐝𝒕 = 𝒕∗ +
𝟔𝟎𝟎𝟎𝚫𝒕 

 
where 𝑧𝑠  is the input length of the constant concentration 

of the chemical solute or drug where the source at the 

banded region is located initially and taken as 𝑧𝑠 =
 0.05 in this paper; and 𝑡 = 𝑛𝑃 with some periodic cycle 

𝑃 = 1000Δ𝑡 for 𝑛 = 0,1,2, ⋯. Then, we investigated the 

effects of periodic injections. The periodic injections make 

a phase-lock phenomenon, where the dynamics repeat 

periodically. We perform the simulations on 

computational domain (0,1) × (−0.1,1.5)  with 

parameters as Γ = 0.5, 𝐷𝑎 = 1, and 𝛼 = 0.05 . Subplots 

(a) and (b) of Figs. 11 and 12 show one cycle snapshots of 

dynamics with 1000Δ𝑡  and 2000Δt  periodic injections, 

respectively. In the following tests, we set t∗ = 20000Δt, 
which is the phase-lock state. Subplot (c) of Figs. 11 and 

12 show concentration distribution profiles concerning 

periodic injection from 𝑡 = 0.1  to 𝑡 = 1.5 , for each 

injection concentration increases under the condition 𝑐 ≤
1 and  diffuses between mobile and immobile phases. 

However, at time 𝑡 = 1.5  after injection of chemical 

solute, less amount of concentration is distributed, and this 

is a breakthrough condition just before phase lock. 

Furthermore, we adopted the following source using 

continuous periodic injection inside the domain near the 

boundary 𝑧 = 𝐿: 

𝑐(𝑟, 𝑧, 𝑡) = 0.5(1 + cos(10𝜋𝑡)), 0 ≤ 𝑟 ≤ 1, 𝑧 = −0.1 +
Δ𝑧.                         (45) 

 We set a phase-lock state at 𝑡∗ = 15000Δ𝑡  and 

obtained the results with a new injection condition as 

shown in Fig. 13. Subplots (a) and (b) of Fig. 13 is the 

dynamics for concentration distribution at 𝑡∗ = 5235Δ𝑡, 

while subplot (c) of Fig. 13 shows concentration 

distribution profiles of some random time periods. For 

each injection concentration increases under the condition 

as given in Eq. (45) and diffuses between mobile and 

immobile phases. However, by using the cosine condition 

we observed that the increment in concentration is not as 

high as with the previous condition. Moreover, the 

distribution of solute between the phases is also very low. 

Such computer simulations are useful in drug delivery 

systems that require periodic injections of the drug. 

4. CONCLUSION 

 In this article, we investigated the effect of a chemical 

solute, injected over a short distance for a very brief time, 

on flux transportation between mobile and immobile 

phases of a long circular tube. For the governing equation 

of fluid flowing inside the tube, we used the advection-

diffusion equation, while on the wall of the tube, we used 

phase exchange boundary conditions which consist of an 

irreversible reaction caused by absorption and a reversible 

reaction caused by phase exchange. The equation of 

diffusion with boundary conditions is solved numerically. 

The primary goal of this research is to determine the 

stability criteria of a finite difference numerical scheme 

connected to time step, as well as to conduct a 

computational investigation of periodic injections. Also, 

we compared our work with the previous work (Ng & 

Rudraiah, 2008) and found result produced by our scheme 

is compatible with the existing literature with better 

performance, more accuracy, and greater stability. From 

the numerical computation we can draw the following 

conclusions. 

(a) (b) 

(c) 
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• We investigated how fluid properties and reaction 

kinetics affected the transport of solutes. The 

irreversible absorption parameter ( 𝚪 ) and the 

diffusion coefficient (𝑫𝟎), which results in a quasi-

steady state for high 𝒕 and 𝚪, were shown to have a 

positive association. Also, because of a higher 

advection velocity in the center of the tube, the 

advection coefficient (𝑫𝟏) increased as 𝚪 increased. 

Yet, the diffusive coefficient (𝑫𝟐 ) decreased over 

time with increasing 𝚪  because of a low-velocity 

gradient in the intermediate region. 

• We calculated the dispersion of concentration with 

different values of absorption rate at various time 

levels. We found that for a high absorption rate 

chemical solute was absorbed by the tube wall very 

fast and less amount of fluid accumulated at the tube 

wall, while for the low value of absorption rate 

chemical solute was not absorbed by the tube wall and 

a large amount of solute accumulated along the tube 

wall. We conclude from this behavior that for a large 

value of absorption rate, irreversible reaction 

dominates reversible reaction; and for the low value 

of absorption rate, reversible reaction dominates 

irreversible reaction. 

• We analyzed the condition for periodic injection of 

chemical solute inside a tube for some cycle of time. 

From that, we found that after some cycles of time, 

the concentration profile is phase locked. The steady 

state with cosine condition is achieved much earlier 

as compared to the previous condition. 

• In area average concentration distribution, the 

presence of a high Damköhler number (𝑫𝒂 ≥ 𝟏) will 

limit the second peak in different cases. If the rate of 

phase exchange is less effective (𝑫𝒂 ≤ 𝟏), accessing 

the long-term distribution takes more time. However, 

quick distribution can be observed under specific 

conditions, such as a high Damköhler number 
(𝑫𝒂 ≥ 𝟏𝟎)  and a high absorption rate (𝚪 > 𝟎. 𝟓) . 

These quick distributions can provide valuable 

insights into the early development of dispersion in 

various situations. 

 Overall, our study contributes to the understanding of 

solute dispersion in complex systems and proposes a 

stable and accurate numerical method for solving the 

governing equations. The consideration of periodic 

injections and the introduction of a time-step constraint are 

novel aspects of our work. Through analysis of area 

average concentration distribution, numerical results can 

be obtained that can be used to determine the optimal 

frequency of injection for pulmonary drug delivery 

systems. By injecting the drug at the right frequency, the 

drug can be delivered effectively and efficiently, resulting 

in better treatment outcomes. Moreover, in our future 

research, we will investigate the porosity of the immobile 

layer, a consideration not included in our current model. 
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