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ABSTRACT 

A closed-loop control framework is developed for the co-flow jet (CFJ) airfoil 

by combining the numerical flow field environment of a CFJ0012 airfoil with a 

deep reinforcement learning (DRL) module called tensorforce integrated in 

Python. The DRL agent, which is trained through interacting with the numerical 

flow field environment, is capable of acquiring a policy that instructs the mass 

flow rate of the CFJ to make the stalled airfoil at an angle of attack (AoA) of 18 

degrees reach a specific high lift coefficient set to 2.0, thereby effectively 

suppressing flow separation on the upper surface of the airfoil. The subsequent 

test shows that the policy can be implemented to find a precise jet momentum 

coefficient of 0.049 to make the lift coefficient of the CFJ0012 airfoil reach 2.01 

with a negligible error of 0.5%. Moreover, to evaluate the generalization ability 

of the policy trained at an AoA of 18 degrees, two additional tests are conducted 

at AoAs of 16 and 20 degrees. The results show that, although using the policy 

gained under another AoA cannot help the lift coefficient of the airfoil reach a 

set target of 2 accurately, the errors are acceptable with less than 5.5%, which 

means the policy trained under an AoA of 18 degrees can also be applied to other 

AoAs to some extent. This work is helpful for the practical application of CFJ 

technology, as the closed-loop control framework ensures good aerodynamic 

performance of the CFJ airfoil, even in complex and changeable flight 

conditions.  
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1. INTRODUCTION 

The co-flow jet is an active flow control (AFC) 

method that was first developed by Zha and Paxton 

(2004). The method is to create an injection slot near the 

leading edge and a suction slot near the trailing edge to 

form a jet channel on the upper surface of the airfoil, as 

shown in Fig. 1. 

A high-energy jet is injected through the injection slot 

to the flow field along the surface of the airfoil, and the 

same amount of mass flow is withdrawn into the suction 

slot. With the injection of high-energy jets into the 

external flow field, the energy of the boundary layer of the 

suction surface surges; that is, strong jet mixing and 

energy exchange occur with the main flow to ensure that 

the energy of the boundary layer is sufficient to overcome 

the inverse pressure gradient at high AoAs, thereby 

inhibiting flow separation. The streamline of the baseline 

airfoil and CFJ airfoil for NACA2415 is shown in Fig. 2. 

 

 
Fig. 1 Baseline airfoil and CFJ airfoil for NACA2415 

 

 
Fig. 2 Streamline of the baseline airfoil and CFJ 

airfoil for NACA2415 
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Since the concept of the CFJ was proposed, 

researchers have developed the technique from the 

mechanism study of 2D CFJ airfoils (Zha et al., 2006b) to 

the parametric study of CFJ airfoils with different shapes 

and various freestream conditions (Wang et al., 2008; 

Lefebvre & Zha, 2014; Ma & Xu, 2022; Ma et al., 2023). 

Using different study methods, such as numerical 

simulation (Wang & Zha, 2011; Gan et al., 2013), wind 

tunnel tests (Zha et al., 2006a; Zha et al., 2007a; Zha et al., 

2018) and application research (Yang & Zha, 2019; Lei & 

Zha, 2021; Xu & Zha, 2021), CFJ technology has been 

demonstrated to have potential in lift enhancement and 

drag reduction with low energy consumption. However, 

despite years of development, CFJ technology is still an 

open-loop control method, which implies that the control 

strategy is fixed and nonadjustable. This approach is not 

sufficient to effectively address the complex and volatile 

nature of practical flight situations. Therefore, developing 

closed-loop methods for CFJ technology is significant. 

There are many closed-loop control methods that can 

be selected for research. In general, closed-loop control 

methods can be divided into two categories: traditional 

PID control and model predictive control (MPC) (Franklin 

et al., 2019). Although PID control is widely used in 

engineering for its mature and simple technology, 

adjusting the PID parameters is still challenging, as it 

requires prior experience and multiple trials to acquire 

satisfactory parameters. Additionally, the control effect of 

PID is not ideal for high-dimensional and nonlinear 

systems. MPC approaches are better suited to solve 

nonlinear and high-dimensional control problems (Siegel 

et al., 2003; Glauser et al., 2004; Ahuja & Rowley, 2010), 

but they are comparatively difficult to implement. This is 

because researchers need to observe the entire system to 

derive the reduced-order model (ROM), which requires 

large amounts of data from experiments or numerical 

simulations and can restrict the feasibility of the method. 

In the field of artificial intelligence (AI), a method 

called reinforcement learning (RL) is capable of finding 

control strategies automatically by interacting with the 

environment that needs to be controlled. The method has 

been used for solving low-dimensional problems since the 

1980s (Sutton, 1988). Since the performance of computers 

has been greatly enhanced, deep learning has become a 

popular machine learning method using artificial neural 

networks (ANNs), which have worked well in perceptual 

problems such as speech and image recognition since 2012 

(Krizheysky et al., 2017). Therefore, deep reinforcement 

learning (DRL) was devised by combining deep learning 

and RL to utilize the great ability of ANNs in data 

representation (Akbiyik & Yavuz, 2021; Moshtaghzadeh 

& Aligoodarz, 2022). The DRL method has been widely 

applied in different domains, including games, such as 

Atari games (Mnih et al., 2013) and AlphaGo (Silver et 

al., 2016), industrial applications, such as unmanned 

vehicles (Kiran et al., 2022), and the field of robot control 

(Gu et al., 2017). 

Recently, researchers in the field of flow control have 

shown interest in utilizing DRL technology in AFC 

systems due to its ability to handle problems with 

nonlinearity and high dimensionality. Two typical objects 

were mainly discussed: 2D flow past circular cylinders 

and flow past airfoils. By using various DRL algorithms, 

such as proximal policy optimization (PPO) and deep Q-

network (DQN), control strategies for different purposes, 

i.e., drag reduction (Rabault et al., 2019; Rabault & 

Kuhnle, 2019; Tang et al., 2020; Ren et al., 2021a; Paris 

et al., 2021) and hydrodynamic stealth (Ren et al., 2021b) 

of a circular cylinder and flow separation control of an 

airfoil (Shimomura et al., 2020), were successfully 

developed. Rabault et al. (2019) used the PPO algorithm 

to search for the best mass flow rate of jets implemented 

symmetrically on the upper and lower surfaces of a 

circular cylinder to reduce drag. This was the first time that 

DRL was used to perform AFC in a simple computational 

NOMENCLATURE 

a actions  S reference area 

Cd drag coefficient  t discrete time step 

Cl lift coefficient  T final time step of a trajectory 

Cp pressure coefficient  Vj velocity of the jet 

Cμ jet momentum coefficient  𝑉∞ velocity of the freestream 

Dj
2 variance of the pressure per surface grid point  xij 

pressure value of the jth grid point under the ith 

flight states 

H height  𝑥𝑗 
average pressure value of the jth grid point 

under 8400 flight states 

i serial number of the flight states  α learning rate 

j 
serial number of the grid point on the surface 

of the airfoil 
 β 

parameter for adjusting variation smoothness 

of the mass flow rate 

J expected return  γ discount factor 

l 
probability ratio of the new policy and the old 

policy 
 ε 

hyperparameter which limits l to a certain 

range 

L loss function  θ parameter of the policy 

�̇� mass flow rate of the jet  μ average value of a Gaussian distribution 

Ma Mach number  π policy 

r rewards  𝜌∞ density of the freestream 

R discounted return  σ variance of a Gaussian distribution 

s states  τ 
trajectory, which is a sequence of states, 

actions and rewards 
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fluid dynamics (CFD) simulation, where the Reynolds 

number was relatively low. To speed up obtaining control 

strategies, Rabault and Kuhnle (2019) were inspired by 

parallel numerical simulation and developed an advanced 

version of the method discussed before. They achieved 

this by adapting the DRL algorithm for parallelization, 

which involved running several independent simulations 

in parallel to gather experiences more rapidly. To further 

improve this work, several research studies have been 

conducted to enhance the robustness of DRL methods 

(Tang et al., 2020; Ren et al., 2021a) and optimize the 

sensor layout (Paris et al., 2021). For the purpose of hiding 

traces of bluff bodies, Ren et al. (2021b) used the DRL 

algorithm to find the control policy of windward-suction-

leeward-blowing actuators implemented on a bluff body. 

As a result, compared to the uncontrolled bluff body, the 

velocity deficit in the wake of the controlled bluff body 

was significantly reduced. To control the flow past 2D 

airfoils, Shimomura et al. (2020) carried out the first trial. 

They used a dielectric barrier discharge plasma actuator 

(DBDPA) installed on the upper surface of an NACA0015 

airfoil to prevent flow separation. By applying the DQN 

algorithm, the authors searched for the optimal frequency 

of the actuator at AoAs of 12° and 15°. The effectiveness 

of this strategy was experimentally investigated in a low-

speed wind tunnel at a chord Reynolds number of 6.3×104. 

This study further confirmed the potential of DRL and 

paved the way for applying DRL-learned policies to other 

AFC-controlled airfoils. In addition to the field of flow 

control, Lou et al. (2023) applied DRL to aerodynamic 

optimization. Using a deep Q-network (double DQN), the 

authors realized the goal of finding the best airfoil 

geometry to attain a high lift-drag ratio, and this trial also 

confirmed the power of DRL in the field of applied fluid 

mechanics. 

Therefore, the aim of this research is to combine the 

power of the DRL algorithm with CFJ to establish a 

closed-loop control framework for a stalled airfoil 

experiencing significant flow separation. The main 

objective of this control framework is to enhance the lift 

coefficient of the airfoil when it is in a stalled condition, 

thereby mitigating flow separation. To accomplish this 

goal, ten strategically placed pressure sensors are utilized 

to provide the control framework with crucial information 

about the flow field. The DRL agent interacts with the 

environment and learns its policy through these sensor 

data. A designed reward function is used as feedback to  

 
Fig. 3 2-D mesh of the CFJ0025 airfoil for CFD 

calculation 

 

guide the agent’s learning process, which allows the agent 

to determine the appropriate mass flow rate for the CFJ, 

ultimately achieving the desired lift coefficient. This 

research is the first endeavor in utilizing a closed-loop 

control method for CFJ airfoil systems. This trial holds 

potential in using CFJ technology in complex, changeable 

flying situations, making it more feasible for practical 

engineering applications of CFJ technology. 

2. METHODOLOGY 

2.1 Flow Solver and 2-D Mesh of CFJ0012 Airfoil for 

CFD Calculation 

In this paper, numerical simulations of the flow field 

are conducted using Ansys Fluent software, which is  

 

based on the finite volume method. The Reynolds-

averaged Navier‒Stokes (RANS) equations, along with 

the Spalart-Allmaras (SA) turbulence model, are 

employed to validate the numerical method for the 

CFJ0025 airfoil. The CFJ0025 airfoil is a modified version 

of the NACA0025 airfoil, specifically designed to 

incorporate a CFJ. 

The geometry model and computational conditions 

are based on the referenced paper (Zha et al., 2007a). The 

freestream Mach number is set to 0.11, and the Reynolds 

number, calculated based on the chord length, is 3.8×105. 

A two-dimensional mesh, as displayed in Fig. 3, is 

employed for the CFD calculation. 

Figure 4 illustrates a comparison of the present 

computed value, the experimental value (Zha et al., 2007a) 

and the computed value calculated by Zha et al. (2007b) at 

various AoAs. In Fig. 4 (a), the present calculated  

lift coefficient matches well with the experimental result  

(a)  (b)  

Fig. 4 Computed results compared with the experimental results at different angles of attack: (a) lift coefficient 

and (b) drag coefficient 
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Table 1 Detailed information of three grids at different densities 

Densities 

Parameters 

Wrap-around 

points 
Normal layers Growth rate Size of the slot mesh 

Size of the external flow 

field 

Coarse 154 81 1.20 99×30 154×80 

Medium 315 151 1.15 230×50 315×150 

Fine 649 191 1.10 297×70 645×190 

 

(a)  (b)  (c)  
Fig. 5 2-D mesh for the CFJ0012 airfoil at three different densities: (a) coarse grid, (b) medium grid, and (c) fine 

grid 

 

 

(a)  (b)  
Fig. 6 Computed result for the CFJ0012 airfoil in three different grid densities: (a) lift coefficient and (b) drag 

coefficient 

 
when compared to the referenced computed values. This 

indicates that the present calculation method accurately 

predicts the lift coefficient of the airfoil, providing 

satisfactory agreement with the experimental data. 

However, there is a significant discrepancy between the 

experimental and computed values of the drag coefficient, 

as shown in Fig. 4 (b). This discrepancy could be 

attributed to the probable experimental measurement error 

or inadequate turbulence simulation by the RANS model 

(Zha et al., 2007b). In the present research, the lift 

coefficient of the airfoil is specifically focused on, and 

hence, the calculation method is sufficient for the study. 

In this study, the CFJ0012 airfoil is selected as the 

subject of investigation, and the chord length of the airfoil 

is 1 m. The injection and suction slots are located at 7% 

and 85% of the chord from the leading edge, and the 

widths of the injection and suction slots are 0.45%c and 

0.9%c, respectively. To ensure grid independence and 

evaluate grid sensitivity, three different density grids are 

created, as depicted in Fig. 5. The grids are set in an O-

type structure. The total number of grids is 15290, 57400 

and 144100, respectively. The far-field is set to 50c for all 

three grids. To ensure y+<1, the heights of the first layer 

are 1.37×10-5, 7×10-6, and 1×10-6. Other detailed 

information on the grids is listed in Table 1. The 

freestream Mach number is 0.2, and the Reynolds number 

based on the chord length is 4.68×106. The jet momentum 

coefficient is 0.04. The computed lift coefficient and drag 

coefficient for these three grid sizes are presented in Fig. 

6. The results indicate that the computed values obtained 

from the medium and fine grids exhibit good agreement. 

However, it is observed that the computed values from the 

coarse grid differ significantly from those of the medium 

and fine grids. Considering both computational efficiency 

and accuracy, the medium grid is chosen for subsequent 

studies. 

2.2 DRL-Based Closed-Loop Control Framework 

Using the PPO Algorithm Applied to the CFJ0012 

Airfoil 

The training process of DRL involves learning and 

optimizing the policy of the DRL agent by continually 

interacting with the environment. This training process 

can be conceptualized as an episode, denoted as τ in Eq. 

(1), which records how the agent interacts with and 

receives feedback from the environment. 

0 0 0 1 1 1 T T T= , , , , , ,..., , ,τ s a r s a r s a r（ ）                       (1) 

where s represents the state of the environment; a 

represents the action given by the agent; and r represents 
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the reward value calculated through a defined reward 

function. 

At the start of an episode, the agent observes the 

initial state of the environment. Based on this information, 

the untrained agent will choose an action randomly from 

its action set. The chosen action is then implemented in the 

environment, causing it to transition to a new state. The 

environment provides the agent with a reward value, 

which serves as feedback on the quality of the action 

taken. The agent then updates its policy using this 

information, with the goal of finding a policy that 

maximizes the discounted return defined in Eq. (2). 

0

( )
T

t

t

t

R r 
=

=                                                      (2) 

where 𝛾 is a discount factor ranging from 0 to 1, which is 

used to decrease the importance of future rewards. 

Various algorithms have been proposed in the 

development history of DRL, including REINFORCE, 

TRPO (Trust Region Policy Optimization) (Schulman et 

al., 2015), PPO, etc. Of these algorithms, the PPO 

algorithm, proposed by Schulman et al. (2017), has been 

widely recognized for its remarkable efficiency and 

robustness in practical applications. Therefore, a PPO 

agent is utilized in this paper as a part of the closed-loop 

control system. 

The detailed framework based on the PPO algorithm 

is shown in Fig. 7, and the training parameters of PPO are 

listed in Table 2. The PPO agent used in this paper 

includes an actor network, whose structure is 

automatically defined by tensorforce according to the 

input types and shapes. The PPO agent will optimize its 

policy by interacting with the environment of a numerical 

flow field of the controlled object: the CFJ0012 airfoil 

with a very weak Cμ of 0.0001 at an angle of attack of 18°. 

The freestream Mach number is 0.2, and the Reynolds 

number based on the chord is 4.68×106. At the beginning 

of the training process, the actor network takes the initial 

state “ s ” as input and then outputs the average value μ 

and the variance σ to form a Gaussian distribution. From 

this distribution, an action value “ a ” within a set range 

will be randomly chosen. After implementing a jet with a 

mass flow rate of “ a ”, the flow field transitions to the next 

state “ s’ ”. Simultaneously, a reward value “ r ” is 

computed, which provides immediate feedback for the 

agent’s actions. To improve the agent’s performance, a 

dataset consisting of the state-action-reward-next state 

tuple (s, a, r, s’) is stored in an experience replay buffer. 

This buffer allows the agent to learn from past experiences 

by sampling mini batches of transitions. During training, 

the parameter of the actor network 𝜃  is updated by 

minimizing the loss function shown in Eq. (3). 

t
ˆ = [min( ( ) , ( ( ),1 ,1 ) )]actor t t t tL l R clip l R   − +E        (3) 

where ( ) ( | ) / ( | )
new oldt t t t tl a s a s   =  is the probability 

ratio of the new policy and the old policy and  is a 

hyperparameter with a value of 0.25, which limits the 

value of ( )tl   to the range of [1 ,1 ] − + . 

 
Fig. 7 Closed-loop control framework built with the 

PPO algorithm 
 

Table 2 Training parameters for PPO 

Parameters Value 

Experience memory size 50000 

Batch size 22 

Update frequency 2 

Learning rate 0.003 

Discount factor 0.97 

Exploration 0.1 

Episode timesteps 40 

 

The above introduction to the DRL framework shows 

that it is crucial to carefully design the state space, the 

action space and the reward function. Hence, the design of 

these three parts is given as follows. 

A. Determination of the State Space 

The state space of this framework involves the 

pressure data collected from ten carefully selected points 

located on the surface of the airfoil. The choice of these 

specific points is determined by two crucial criteria (Samy 

et al., 2010): 

a. Steep Pressure Gradient 

This criterion focuses on identifying points with a 

significant and noticeable change in the pressure 

distribution along the airfoil’s surface. These points are 

selected based on the presence of a steep pressure gradient, 

indicating a rapid transition in the pressure distribution. 

b. Substantial Variance in the Pressure Values 

The second criterion involves the identification of 

points that have considerable variation in the pressure 

values as the flight state changes. These points reflect 

sensitivity to alterations in the parameters such as the 

height H, Mach number Ma, and angle of attack (AoA). 

To identify regions that meet the first criterion, the Cp 

distribution on the CFJ0012 airfoil is calculated. Figs. 8 

(a)-(d) show the Cp distribution on the CFJ0012 airfoil 

under various flight conditions. Each figure within the set 

illustrates the Cp curves with the variation of a single 

parameter. Upon observing Figs. 8 (a)-(d), all figures 

consistently reveal that regions near the leading edge and 

the trailing edge, as well as the locations of the injection 

and suction slots, exhibit noteworthy changes in the 

pressure distribution along the surface. These areas 

display steep pressure gradients, indicating rapid 

transitions in the pressure values along the surface of the  
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(a)  (b)  

(c)  (d)  
Fig. 8 Cp distribution of the CFJ0012 airfoil under different flight conditions with only one flight parameter 

change: (a) Cp curves with only H changes, (b) Cp curves with only AoA changes, (c) Cp curves with only Ma

changes, and (d) Cp curves with only Cμ changes 

 

 
Fig. 9 Locations of the pressure probes where the 

pressure gradient is steep 

 

 

Fig. 10 Numbering of the airfoil surface grid nodes  

airfoil. As a result, the range of pressure probes can be 

narrowed down to the red area on the airfoil, as shown in 

Fig. 9 (starting from the leading edge point, a total of 317 

grid nodes of the airfoil surface are numbered clockwise, 

as shown in Fig. 10). 

To further refine and determine the appropriate 

locations of the pressure probes, Criterion 2 should be 

considered. In the case of the CFJ airfoil, four key flight 

parameters are taken into account: the height H (ranging 

from 0 km to 8 km with an interval of 2 km), Mach number 

Ma (ranging from 0.2 to 0.5 with an interval of 0.1), jet 

momentum coefficient Cμ (ranging from 0.01 to 0.2 with 

an interval of 0.01), and angle of attack AoA (ranging from 

0° to 20° with an interval of 1°). Among these parameters, 

Cμ is a particular flight parameter for the CFJ airfoil. It is 

a dimensionless parameter that quantifies the intensity of 

the CFJ, and the definition equation is shown in Eq. (4). 

2

j

1
= / ( )

2
μC mV ρ V S

•

∞ ∞                                                        (4) 

where m
•

 is the mass flow rate of the jet; jV is the velocity 

of the jet; 
 is the density of the freestream; V

 is the 

velocity of the freestream; and S is the reference area. 

Therefore, 8400 (5×4×20×21) groups of flight states are 

obtained through the method shown in Fig. 11. 

Then, the variance of the pressure per point is 

calculated through Eq. (5). 
8400 2

2 1
( )

8400

ij ji

j

x x
D =

−
=


                                           (5) 
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Fig. 11 8400 samples of flight states 

 

 
Fig. 12 Variances of the pressure values per point 

 
where {1,2,3,...,8400}i  is the serial number of the 

flight states; {1,2,3,...,317}j  is the serial number of the 

grid point on the surface of the airfoil; xij denotes the 

pressure value of the jth grid point under the ith flight 

states; and jx is the average pressure value of the jth grid 

point under 8400 flight states. 

Figure 12 displays the variances of the pressure values 

for each grid point. P32, P40, P116, P165 and P300 exhibit 

larger variances compared to the other points. These 

specific locations are indicated in Fig. 13. Interestingly, 

these points fall within the red area of the airfoil, as 

depicted in Fig. 9. 

In the final selection of the pressure probes for the 

DRL framework, a set of pressure values of 10 pressure 

probes (Fig. 14) is chosen as members of the state space, 

and the coordinates of the pressure probes are listed in 

Table 3. Except for P57 and P104, all other points in the 

set satisfy at least one of the previously mentioned criteria. 

P57 and P104 are intentionally chosen because they are 

located within the jet slot. These points have the potential 

to provide information regarding the intensity of the jet. 

B. Determination of the Action Space 

In this framework, the range of the action space is 

exactly the range of the jet momentum coefficient. To 

facilitate the efficiency of the agent in obtaining the 

desired policy within the DRL framework, a preliminary 

experiment is conducted to determine a rough range of the  

 
Fig. 13 Locations of the points where the pressure 

variance is large 

 

 

Fig. 14 Ten selected pressure points 

 
Table 3 Coordinates of the ten selected pressure 

points 

Probe number Coordinate 
X(m) Y(m) 

1 0 0 

7 0.00416 0.01117 

32 0.07293 0.0369 

40 0.10598 0.04298 

57 0.25351 0.05384 

104 0.80718 0.01661 

116 0.8516 0.02034 

165 0.99892 0.0014 

285 0.11169 -0.04869 

300 0.03470 -0.03031 

 

momentum coefficient. The experimental results, shown 

in Fig. 15, show that at an AoA of 18 degrees, the lift 

coefficient of the airfoil varies between 1.7 (Cμ= 0.04) and 

2.3 (Cμ= 0.1). Therefore, in the present study, 2.0 is set as 

the control target, and the goal of the DRL training is to 

find a corresponding Cμ to help the CFJ airfoil reach the 

lift coefficient of 2.0. To simplify the numerical 

simulation process, the boundary conditions of the 

injection slot and the suction slot are modified to the mass 

flow inlet and mass flow outlet, respectively. Based on Eq. 

(4), the range of the mass flow rate is supposed to be [0.8  
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Fig. 15 Lift coefficient curves under different jet 

momentum coefficients 

 

kg/s, 1.2 kg/s]. However, to further display the decision-

making ability of the DRL algorithm, the range is slightly 

broadened to [0.6 kg/s, 1.2 kg/s]. 

C. Determination of the reward function 

The reward value should increase as the lift 

coefficient of the airfoil approaches the target value of 2.0. 

Therefore, the reward function of this case is designed and 

shown in Eq. (6). 

2t lr C= − −                                                           (6) 

3. RESULTS AND DISCUSSIONS 

The whole training process starts from an initial flow 

field where Cμ is very small ( 0.0001C = ), i.e., the initial 

state. To obtain the instant lift coefficient according to the 

change in Cμ, a transient solver is used in this section. One 

important indicator for assessing the performance of the 

DRL training process is the variations in the reward values 

over the episodes. Here, one episode includes 40 actions. 

The mass flow rate of the jet changes gradually to the 

action value given by the agent in 25 numerical time steps 

according to Eq. (7) to ensure that the CFD solver will not 

crash. 

1 1( )t t tm m β a m
• • •

− −= + −                                            (7) 

where tm
•

 is the current mass flow rate of the CFJ; 1tm
•

− is 

the mass flow rate at the last numerical step; a is the action 

value given by the agent; and 1/ 3β =  is a parameter for 

adjusting the variation smoothness of the mass flow rate. 

The reward curve over the episodes is depicted in Fig. 

16. There are five points where the reward is extremely 

low, which can be attributed to the “reset” process. The 

“reset” process is that the beginning state of an episode 

will be reset to the initial state mentioned before, and its 

possibility is less than 20%. Otherwise, a new episode will 

start from the final state of the last episode. There is a 

noticeable increase in the reward value after the 40th 

episode, indicating that the agent begins to discover a 

favorable policy. However, the growth rate becomes  

 

Fig. 16 Reward progression over the episodes at 

AoA=18° 

 

 

Fig. 17 Policy test at AoA=18° 

 

stable after the 90th episode, suggesting that the agent’s 

policy variation becomes less pronounced. 

Four tests are carried out after Episodes 60, 80, 100 

and 120, as shown in Fig. 17, and each test lasts for one 

second. In the “without control” part of Fig. 17, the 

CFJ0012 airfoil with a very weak Cμ of only 0.0001 suffers 

a very low lift coefficient of approximately 0.74. 

However, when the CFJ0012 airfoil is controlled 

according to the agent’s policy, its lift coefficient 

experiences a significant increase and eventually 

approaches the target value of 2.0. Among the four tests, 

the policy acquired after Episode 120 exhibits the best 

performance. The lift coefficient becomes stable at 

approximately 2.01, with a negligible error of only 0.5%. 

In addition, the policy has physical meaning: when the lift 

coefficient is much less than the target value 2, the agent 

tends to output large action values to help the airfoil 

rapidly increase its lift coefficient, whereas when the lift 

coefficient approaches 2.0, the jet momentum coefficient 

gradually decreases and settles at approximately 0.049. 

Figure 18 provides a visual representation of the 

pressure contours at an AoA of 18° for two scenarios: flow 

fields with a weak jet (Cμ=0.0001) and a much stronger jet 

instructed by the agent. In Fig. 18 (a), it is clearly observed  
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(a)  (b)  

Fig. 18 Comparison of the pressure contours with and without control at AoA=18°: (a) without control, and 

(b) with control 

 

(a)  (b)  

Fig. 19 Generalization ability test of policy: (a) AoA=16°, and (b) AoA=20° 

 

(a) (b)  

Fig. 20 Comparison of the pressure contours with and without control at AoA=16°: (a) the flow field without 

control, and (b) the flow field with control 

 

that flow separation takes place on the upper surface of the 

airfoil. This separation creates an adverse pressure 

gradient and reduces the overall lift generated by the 

airfoil. However, in Fig. 18 (b), when the CFJ is activated 

according to the agent's policy, the flow separation is 

effectively suppressed. This is evidenced by the pressure 

contours and streamlines showing a smooth and attached 

flow along the upper surface of the airfoil. The successful 

suppression of flow separation and transition to attached 

flow, as depicted in Fig. 18 (b), leads to a significant 

enhancement in lift, as shown in the “with control” portion 

in Fig. 17. 

To test the policy's generalization ability, two more 

tests are conducted: one test at AoA=16° and the other test 

at AoA=20°. The test results are shown in Figs. 19 (a) and 

(b), respectively. At AoA=16°, the lift coefficient with a 

very weak jet (Cμ=0.0001) is approximately 0.75. After 

implementing the jet based on the policy, the lift 

coefficient increases significantly and reaches 1.89 within 

one second. However, this value deviates from the target 

value of 2.0, resulting in an error of 5.5%. At AoA=20°, 

when 𝐶𝜇 is very weak, the lift coefficient (Cl) fluctuates 

between 0.94 and 1.2. When the agent instructs a value of 

Cμ=0.055, the Cl curve rises to 2.1 within one second, with 

an error of 5% compared to the target value of 2. 

Therefore, the policy trained at 18° can instruct the airfoils 

at 16° and 20° to realize the control target to some extent, 

which means that the policy has a generalization ability. 

Moreover, the agent will provide different action values 

according to different states, for instance, Cμ=0.049 for 

AoA=16° and Cμ=0.055 for AoA=20°. 

The pressure contours corresponding to the tests are 

shown in Fig. 20 and Fig. 21. Fig. 20 (a) displays the 

pressure contour of the flow field at AoA=16° with a very 

weak jet (Cμ=0.0001). In this case, obvious flow 

separation occurs on the upper surface of the airfoil..
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(a)  (b)  

Fig. 21 Comparison of the pressure contours with and without control at AoA=20°: (a) the flow field without 

control, and (b) the flow field with control 

 

However, when a stronger jet is applied according to the 

agent's policy, the flow separation completely disappears, 

as shown in Fig. 20 (b). At AoA=20°, vortex shedding 

occurs on the upper surface of the uncontrolled airfoil 

(Fig. 21 (a)). This vortex shedding leads to fluctuations in 

the lift coefficient, as observed in the "without control" 

portion in Fig. 19 (b). However, when the jet with 

Cμ=0.055 is implemented, this phenomenon is effectively 

suppressed (Fig. 21 (b)), resulting in no fluctuation in the 

lift coefficient 

4.  CONCLUSION 

In this paper, a closed-loop control framework based 

on the PPO algorithm is developed for the CFJ airfoil. The 

framework exhibits accurate control performance, 

successfully achieving the settled control target of 

enhancing the lift coefficient to a specific value of 2.0, 

with an error of only 0.5%, for the stalled CFJ airfoil at an 

AoA of 18°. This achievement is made possible by the 

policy derived from the PPO agent, which interacts 

continuously with the environment through the state-

action-reward-next state tuple. Additionally, 

generalization ability tests are conducted to evaluate the 

performance of the policy at different AoAs of 16° and 

20°. The results indicate that the policy can be applied to 

other AoAs as well. By effectively suppressing flow 

separation and vortex shedding on the upper surface of the 

airfoil, the lift coefficient is significantly improved. 

Future studies are planned to focus on further 

enhancing the robustness of this closed-loop control 

framework and increasing the control efficiency in terms 

of energy conservation. The study of the robustness of the 

framework includes investigating whether the framework 

can facilitate the attainment of different control targets and 

examining the applicability of the policy in various flight 

situations, such as different Mach numbers and Reynolds 

numbers. In terms of energy conservation, penalty terms 

such as the power consumption coefficient and drag 

coefficient could be added to the reward function to 

conduct further research. 
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