Cai, L., Lou, Z., Li, T., & Zhang, J. (2020). Numerical study on the effects of anti-snow deflector on the wind-snow flow underneath a high-speed train. Journal of Applied Fluid Mechanics, 14(1), 287-299. https://doi.org/10.47176/jafm.14.01.31375
Deng, E., Yang, W. C., He, X. H., Ye, Y. C., Zhu, Z. H. & Wang, A. (2020). Transient aerodynamic performance of high-speed trains when passing through an infrastructure consisting of tunnel–bridge–tunnel under crosswind.
Tunnelling and Underground Space Technology, 102, 103440.
https://doi.org/10.1016/j.tust.2020.103440
Deng, E., Yang, W. C., He, X. H., Zhu, Z., Wang, H. F., Wang, Y. W., Wang, A., & Zhou, L. (2021). Aerodynamic response of high-speed trains under crosswind in a bridge-tunnel section with or without a wind barrier.
Journal of Wind Engineering and Industrial Aerodynamics, 210, 104502.
https://doi.org/10.1016/j.jweia.2020.104502
Du, L. M., Bian, C. J., & Zhang, P. (2022). Aerodynamic response analysis of high-speed trains passing through high platforms under crosswind. Journal of Applied Fluid Mechanics, 15(5), 1525-1543. https://doi.org/10.47176/jafm.15.05.1045
Ji, P., Feng, Z. L., & Liao, S. L. (2022). Pedigree aerodynamic shape design of high-speed trains. Journal of Applied Fluid Mechanics, 16(1), 193-204. https://doi.org/10.47176/jafm.16.01.1331
Li, M., Liu, B., Liu, T. H., & Guo, Z. J. (2020). Improved delayed detached eddy simulation of the slipstream and trackside pressure of trains with different horizontal profiles. Journal of Applied Fluid Mechanics, 13(2), 457-468. https://doi.org/10.29252/jafm.13.02.30291
Li, W. H., Liu, T. H., Zhang, J., Chen, Z. W., Chen, X. D., & Xie, T. Z. (2017). Aerodynamic Study of Two Opposing Moving Trains in a Tunnel Based on Different Nose Contours. Journal of Applied Fluid Mechanics, 10(5), 1375-1386.doi: 10.18869/acadpub.jafm.73.242.27738
Li, Y., Wei, D. H., Qin, D., Yang, Y. H., & Li, T. (2021). Research on the pressure wave characteristics of high-speed trains passing each other at speeds of 400 km /h and above.
Journal of Railway Engineering Society, (08), 25-29+35.
https://doi.org/10.3969/j.issn.1006-2106.2021.08.006
Liang, H., Sun, Y., Li, T., & Zhang, J. (2022). Influence of marshalling length on aerodynamic characteristics of urban emus under crosswind. Journal of Applied Fluid Mechanics, 16(1), 9-20. https://doi.org/10.47176/jafm.16.01.1338
Mei, Y. G., Li, M. H., & Guo, R. (2019). Aerodynamic load distribution characteristics of pressure wave when trains passing each other in high-speed railway tunnel.
China Railway Science, (06), 60-67.
https://doi.org/CNKI:SUN:ZGTK.0.2019-06-009
Meng, S., Meng, S., Wu, F., Li, X. L., & Zhou, D. (2021). Comparative analysis of the slipstream of different nose lengths on two trains passing each other.
Journal of Wind Engineering and Industrial Aerodynamics, 208, 2021,104457.
https://doi.org/10.1016/j.jweia.2020.104457
Niu, J. Q., Zhang, Y. C., Li, R., Chen, Z. W., Yao, H. D., & Wang, Y. (2022). Aerodynamic simulation of effects of one- and two-side windbreak walls on a moving train running on a double track railway line subjected to strong crosswind.
Journal of Wind Engineering and Industrial Aerodynamics, 221,
https://doi.org/10.1016/j.jweia.2022.104912
Ouyang, D. H., Deng, E., Yang, W. C., Ni, Y. Q., Chen, Z. W. , & Zhu, Z. H. (2023). Nonlinear aerodynamic loads and dynamic responses of high-speed trains passing each other in the tunnel–embankment section under crosswind.
Nonlinear Dynamics 111, 11989–12015.
https://doi.org/10.1007/s11071-023-08479-7
Qiao, Y. J., He, D. H., Chen, H. C., & Zhang, C. (2016). Study on influence of line spacing of high speed railway on pressure wave due to meeting of two oncoming trains.
High Speed Railway Technology, (06),7-11+18.
https://doi.org/10.3969/j.issn.1674-8247.2016.06.002.
Wang, M., Wang, Z. X., Qiu, X. W., Li, X. X., & Li, X. Z. (2022). Windproof performance of wind barrier on the aerodynamic characteristics of high-speed train running on a simple supported bridge.
Journal of Wind Engineering and Industrial Aerodynamics, 223, 104950.
https://doi.org/10.1016/j.jweia.2022.104950
Wu, Z., Zhou, D., Li, S., Yang, J., Chen, G., & Li, X. (2022). Numerical analysis of the effect of streamlined nose length on slipstream of high-speed train passing through a tunnel. Journal of Applied Fluid Mechanics, 15(6), 1933-1945. https://doi.org/10.47176/jafm.15.06.1189
Xi, Y. H., Mao, J., Liu, R. D., & Yang, G. W. (2016). Study on pressure wave amplitude of high-speed train meeting on open line.
Journal of South China University of Technology (Natural Science Edition), (03), 118-127.
https://doi.org/10.3969/j.issn.1000-565X.2016.03.017.
Xia, Y. T., Liu, T. H., Su, X. C., Jiang, Z. H., Chen, Z. W., & Guo, Z. J. (2022). Aerodynamic influences of typical windbreak wall types on a high-speed train under crosswind.
Journal of Wind Engineering and Industrial Aerodynamics, https://doi.org/10.1016/j.jweia.2022.105203
Xiang, H. Y., Li, Y. L., Wang, B., & Liao, H. L. (2015). Numerical simulation of the protective effect of railway wind barriers under crosswind.
International Journal of Rail Transportation. http://dx.doi.org/10.1080/23248378.2015.1054906
Xu, G., Li, H., Zhang, J., & Liang, X. (2019). Effect of two bogie cavity configurations on the underbody flow and near wake structures of a high-speed train. Journal of Applied Fluid Mechanics, 12(6), 1945-1955. https://doi.org/10.29252/jafm.12.06.29938
Xu, J. L., Sun, J. C., Mei, Y. G., & Wang, R. L. (2016). Numerical simulation on crossing pressure wave characteristics of two high-speed trains in tunnel.
Journal of Vibration and Shock, (03),184-191.
https://doi:10.13465/j.cnki.jvs.2016.03.029
Xu, R. Z., Wu, F., Su, W. H., Ding, J. F., & Vainchtein, D. (2020). A numerical approach for simulating a high-speed train passing through a tornado-like vortex. Journal of Applied Fluid Mechanics, 13(5), 1635-1648. https://doi.org/10.36884/jafm.13.05.31080
Yang, W. C., Deng, E., He, X. H., Luo, L. S., Zhu, Z. H., Wang, Y. W. & Li, Z. T. (2021). Influence of wind barrier on the transient aerodynamic performance of high-speed trains under crosswinds at tunnel–bridge sections. Engineering Applications of Computational Fluid Mechanics, 15(1), 727-746, https://doi.org/10.1080/19942060.2021.1918257
Yao, Y., Sun, Z., Li, G., Prapamonthon, P., Cheng, G., & Yang, G. (2022). Numerical investigation on aerodynamic drag and noise of pantographs with modified structures. Journal of Applied Fluid Mechanics, 15(2), 617-631. https://doi.org/10.47176/jafm.15.02.32849
Zhang, J., Gao, G., Liu, T., & Li, Z. (2017a). Shape optimization of a kind of earth embankment type windbreak wall along the lanzhou-xinjiang railway. Journal of Applied Fluid Mechanics, 10(4), 1189-1200. https://doi.org/10.18869/acadpub.jafm.73.241.27353
Zhang, J., He, K., Wang, J., Liu, T., Liang, X., & Gao, G. (2019). Numerical simulation of flow around a high-speed train subjected to Different Windbreak Walls and Yaw Angles.
Journal of Applied Fluid Mechanics, 12(4), 1137-1149.
https://doi:.org/10.29252/jafm.12.04.29484
Zhang, J., He, K., Xiong, X., Wang, J., & Gao, G. (2017b). Numerical simulation with a des approach for a high-speed train subjected to the crosswind. Journal of Applied Fluid Mechanics, 10(5), 1329-1342. https://doi.org/10.18869/acadpub.jafm.73.242.27566
Zhou, D., Xia, C. J., Wu, L. L., & Meng, S. (2023). Effect of the wind speed on aerodynamic behaviours during the acceleration of a high-speed train under crosswind.
Journal of Wind Engineering and Industrial Aerodynamics. Volume 232, 105287.
https://doi.org/10.1016/j.jweia.2022.105287