Anderson, J. M., Streitlien, K., Barrett, D. S., & Triantafyllou, M. S. (1998). Oscillating foils of high propulsive efficiency.
Journal of Fluid Mechanics, 360, 41–72.
https://doi.org/10.1017/S0022112097008392
Borazjani, I., Sotiropoulos, F., Tytell, E. D., & Lauder, G. V. (2012). Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data,
The Journal of Experimental Biology, 215(4), 671–684.
https://doi.org/10.1242/jeb.063016
Borazjani, I., & Sotiropoulos, F. (2008). Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
The Journal of Experimental Biology,
211, 1541–1558.
https://doi.org/10.1242/jeb.015644
Chen, H. W., Zhang, P. F., Zhang, L. W., Liu, H. L., Jiang, Y., Zhang, D. Y., & Jiang, L. (2016). Continuous directional water transport on the peristome surface of Nepenthes alata.
Nature,
532, 85–89.
https://doi.org/10.1038/nature17189
Gen‐Jin D., & Xi-Yun L. (2005). Numerical analysis on the propulsive performance and vortex shedding of fish-like traveling wavy plate,
International Journal for Numerical Methods in Fluid, 48(12), 1351–1373.
https://doi.org/10.1002/fld.984
Guo, X. Q., Chen, D., & Liu, H. (2015). Does a revolving wing stall at low Reynolds numbers.
Journal of Biomechanical Science and Engineering, 10, 1–10.
https://doi.org/10.1299/jbse.15-00588
Hemmati, A., Van Buren, T., & Smits, A. J. (2019). Effects of trailing edge shape on vortex formation by pitching pan-els of small aspect ratio.
Physical Review Fluids,
033101(4), 1-27.
https://doi.org/10.1103/PhysRevFluids.4.033101
Ou X., Aiguo S., Ji Y., Qixin Z. & Yong Y. (2020). Study on hydrodynamics of a flexible fishlike foil undulating in wall effect
, Engineering Applications of Computational Fluid Mechanics,
14(1), 593-606.
https://doi.org/10.1080/19942060.2020.1745891
Ren, G., Dai, Y., Cao, Z., & Shen, F. (2015). Research on the implementation of average speed for a bionic robotic dolphin,
Robotics and Autonomous Systems, 74, 184–194.
https://doi.org/10.1016/j.robot.2015.07.014
Strefling, P. C., Hellum, A. M., & Mukherjee, R. (2011).
Modeling, simulation, and performance of a synergistically propelled ichthyoids. IEEE/RSJ International Conference on Intelligent Robots and Systems IEEE/ASME Trans. Mechatronics, 17(1), 36–45. San Francisco, CA, USA
https://ieeexplore.ieee.org/document/6094934
Wang, Z., Huang, B., Zhang, M., Wang, G., & Zhao, X. (2018). Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics.
International Journal of Multiphase Flow,
98, 79–95.
https://doi.org/10.1016/j.ijmultiphaseflow.2017.08.014
Wen, L., Wang, T. M., Wu, G. H., & Liang, J. H. (2013). Quantitative thrust efficiency of a self-propulsive robotic fish: Experimental method and hydrodynamic investigation.
IEEE/ASME Transactions on Mechatronics, 18, 1027–1038.
https://doi.org/10.1109/TMECH.2012.2194719
Wu, Z., Yu, J., & Su, Z. (2015, September 6-9). Design and CFD analysis for a biomimetic dolphin-like underwater glider. Proceedings of International Conference on CLAWAR.
Xue G., Liu Y., Si W., Xue Y., Guo F. & Li Z. (2020). Evolvement rule and hydrodynamic effect of fluid field around fish-like model from starting to cruising.
Engineering Applications of Computational Fluid Mechanics, 14(1), 580-592.
https://doi.org/10.1080/19942060.2020.1734095
Zhang, Y. R., Kihara, H., & Abe, K. (2018). Three-dimensional simulation of a self-propelled fish-like body swimming in a channel.
Engineering Applications of Computational Fluid Mechanics,
12(1), 473–492.
https://doi.org/10.1080/19942060.2018.
Zhou, H., Hu, T., & Low, K. H. (2015). Bio-inspired flow sensing and prediction for fish-like undulating locomotion: A CFD aided approach,
Journal of Bionic Engineering, 12(3), 406–417.
https://doi.org/10.1016/S1672-6529(14)60132-3