Berestovitskiy, E. G., Ermilov, M. A., Kizilov, P. I., & Kryuchkov, A. N. (2015). Research of an influence of throttle element perforation on hydrodynamic noise in control valves of hydraulic systems.
Procedia Engineering, 106, 284-295.
https://doi.org/10.1016/j.proeng.2015.06.037
García-Valladares, O., & Santoyo, E. (2014). Modelling of fluid flow through short tube orifices under metastable conditions: A new numerical validation approach for evaluating the mass flow rate with refrigerant mixtures (HFC-407C and HFC-410A).
Applied Thermal Engineering,
67(1-2), 520-528.
https://doi.org/10.1016/j.applthermaleng.2014.03.056
Habibnejad, D., Akbarzadeh, P., Salavatipour, A., & Gheshmipour V. (2022). Cavitation reduction in the globe valve using oblique perforated cages: A numerical investigation.
Flow Measurement and Instrumentation,
83, 102110.
https://doi.org/10.1016/j.flowmeasinst.2021.102110
Jin, Z., Qiu, C., Jiang, C., Wu, J., & Qian, J. (2020). Effect of valve core shapes on cavitation flow through a sleeve regulating valve.
Journal of Zhejiang University-SCIENCE A, 21, 1-14.
https://doi.org/10.1631/jzus.A1900528
Kim, Y., & O"Neal, D. L. (1994). A semi-empirical model of two-phase flow of refrigerant-134a through short tube orifices, Experimental
Thermal and Fluid Science,
9(4), 426-435.
https://doi.org/10.1016/0894-1777(94)90020-5
Li, G., Ding, X., Wu, Y., Wang, S., Li, D., Yu, W., Wang, X., Zhu, Y., & Guo, Y. (2022). Liquid-vapor two-phase flow in centrifugal pump: Cavitation, mass transfer, and impeller structure optimization,
Vacuum,
201, 111102.
https://doi.org/10.1016/j.vacuum.2022.111102.
Liang, J., Luo, X., Liu, Y., Li, X., & Shi, T. (2016). A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves.
International Journal of Heat and Mass Transfer, 103, 684-700.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.112
Liu, J., Liu, Z., Wu, J., Li, Z., Chen, P., & Gu, X. (2022). Visualization experiment and numerical calculation of the cavitation evolution inside the injector ball valve.
Fuel,
329, 125500.
https://doi.org/10.1016/j.fuel.2022.125500
Liu, T., Wang, S., & Xu, Y. (2019). Experimental investigation of stepped short tube orifice as expansion device in domestic air conditioning/heat pump system.
Energy and Buildings,
193, 240-249.
https://doi.org/10.1016/j.enbuild.2019.04.006
Liu, T., Wang, S., Xu, Y., & Dang, C. (2017). Experimental investigation of mass flow rate difference between forward flow and reverse flow of sub-cooled R-22 through stepped short tube orifices,
Applied Thermal Engineering,
124, 1292-1300.
https://doi.org/10.1016/j.applthermaleng.2017.06.118
Ou, G. F., Xu, J., Li, W. Z., & Chen, B. (2015). Investigation on cavitation flow in pressure relief valve with high pressure differentials for coal liquefaction.
Procedia Engineering, 130, 125-134.
https://doi.org/10.1016/j.proeng.2015.12.182
Park, S. H., Phan, T. H., & Park, W.G. (2022). Numerical investigation of laser-induced cavitation bubble dynamics near a rigid surface based on three-dimensional fully compressible model,
International Journal of Heat and Mass Transfer.
191, 122853.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122853
Semrau, S., Skoda, R., Wustmann, W., & Habr, K. (2019). Experimental and numerical investigation of noise generation due to acoustic resonance in a cavitating valve.
Journal of Sound and Vibration,
463, 114956.
https://doi.org/10.1016/j.jsv.2019.114956
Valdés, J. R., Rodríguez, J. M., Monge, R., Peña, J. C., & Pütz, T. (2014). Numerical simulation and experimental validation of the cavitating flow through a ball check valve,
Energy Convers. Manag. 78, 776–786.
https://doi.org/10.1016/j.enconman.2013.11.038.
Wang, G., Deng, J., Kou, L., Wang, W., Gao, Q., & Zhu, X. (2022). Study on the influence of structural parameters on the flow and cavitation characteristics of tandem multi-stage pressure-reducing valves. Flow Measurement and Instrumentation, 87,102230.
https://doi.org/10.1016/j.flowmeasinst.2022.102230
Ye, Y., Chen, J., Pan, Q. S., & Feng, Z. H. (2019). Suppressing the generation of cavitation by increasing the number of inlet check valves in piezoelectric pumps.
Sensors and Actuators A: Physical, 293, 56-61.
https://doi.org/10.1016/j.sna.2019.04.032
Yuan, C., Song, J., Zhu, L., & Liu, M. (2019). Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction,
International Journal of Heat and Mass Transfer, 141, 1009-1024.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.105
Zhang, C. L., & Yang, L. (2005). Modeling of supercritical co 2 flow through short tube orifices,
Journal of Fluids Engineering, 127(6),1194-1198.
https://doi.org/10.1115/1.2060738
Zhang, L. H., Wang, J., Song, Y. X., Li, J. J., Wu, D. Z., & Liu, J. T. (2022). Flow-induced noise mechanism and optimization design of electronic expansion valve.
Vacuum,
204, 111335.
https://doi.org/10.1016/j.vacuum.2022.111335
Zhang, Y., Xu, J., Cheng, L., Zhao, Y., Peng, S., & Jiang, S. (2020). Exploring cavitation erosion resistance of ZrN nanocrystalline coating prepared by double-cathode glow discharge plasma technique,
Vacuum,
182, 109697.
https://doi.org/10.1016/j.vacuum.2020.109697.
Zhou, S., Zhan, F., & Ding, G. (2022). Experimental investigation on two-phase flow noise characteristics of R410A through electronic expansion valve of multi-split air conditioner.
International Journal of Refrigeration,
146, 327-340.
https://doi.org/10.1016/j.ijrefrig.2022.11.011