Effect of Synthetic Jet on NACA0012 Airfoil Vortex Structure and Aerodynamic Characteristics

Document Type : Regular Article

Authors

1 School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi, 030051 China

2 College of Mechatronic Engineering, North University of China, Taiyuan, Shanxi, 030051, China

3 Institute of Intelligent Weapons, North University of China, Taiyuan, Shanxi, 030051, China

Abstract

In this manuscript, the vortex generated by the main frequency excitation of the shedding vortex at various attack angles is investigated by employing the synthetic jet control technique. We also analyzed the impact of the vortex structure on the fled flow around the wing and the spectral characteristics corresponding to the vortex. The dominant frequency and harmonic frequency corresponding to the wave rule of the shedding vortex at various attack angles without the absence of a synthetic jet are selected as the synthetic jet excitation frequency. The results indicate that under the excitation of fixed frequency synthetic jet, the shape of the shedding vortex in the flow field turns correspondingly. Compared with the flow field without jet excitation, it is found that the field with the jet at most attack angles is stable in 2S (Single) mode, and the flow field at a small attack angle is stable in a chaotic state. The angle of attack with a chaotic state is delayed by adding a jet, which makes the curves and corresponding spectral characteristics more orderly. At a defined attack angle, the combined frequency synthetic jet will cause the lift coefficient to fluctuate regularly. At this time, the multiple small-scale vortex structures lead to lift reduction.

Keywords

Main Subjects


AlMutairi, J., ElJack, E., & AlQadi, I. (2017). Dynamics of laminar separation bubble over NACA-0012 airfoil near stall conditions. Aerospace Science and Technology, 68, 193-203. https://doi.org/do10.1016/j.ast.2017.05.015
Arif, M. R., & Hasan, N. (2019a). Performance of characteristic numerical boundary conditions for mixed convective flows past a heated square cylinder using a non-Boussinesq approach. Numerical Heat Transfer, Part A: Applications, 76(4), 254-280. https://doi.org/10.1080/10407782.2019.1627828
Arif, M. R., & Hasan, N. (2019b). Vortex shedding suppression in mixed convective flow past a square cylinder subjected to large-scale heating using a non-Boussinesq model. Physics of Fluids, 31(2), https://doi.org/10.1063/1.5079516
Arif, M. R., & Hasan, N. (2020). Large-scale heating effects on global parameters for flow past a square cylinder at different cylinder inclinations. International Journal of Heat and Mass Transfer, 161, 120237. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120237.
Arif, M. R., & Hasan, N. (2021). Effect of free-stream inclination and buoyancy on flow past a square cylinder in large-scale heating regimes. Physics of Fluids, 33(7). https://doi.org/10.1063/5.0054766
Cao, S., Dang, N., Ren, Z., Zhang, J., & Deguchi, Y. (2020). Lagrangian analysis on routes to lift enhancement of airfoil by synthetic jet and their relationships with jet parameters. Aerospace Science and Technology, 104, 105947. https://doi.org/10.1016/j.ast.2020.105947.
Chang, J., Zhang, Q., He, L., & Zhou, Y. (2022). Shedding vortex characteristics analysis of NACA 0012 airfoil at low Reynolds numbers. Energy Reports, 8, 156-174. https://doi.org/10.1016/j.egyr.2022.01.149
Couto, N., & Bergada, J. M. (2022). Aerodynamic efficiency improvement on a NACA-8412 airfoil via active flow control implementation. Applied Sciences, 12(9), 4269. https://doi.org/10.3390/app12094269
Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G., & Succi, S. (2018). Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Computers & Fluids, 166, 200-208. https://doi.org/10.1016/j.compfluid.2018.02.014
Di, G., Wu, Z., & Huang, D. (2017). The research on active flow control method with vibration diaphragm on a NACA0012 airfoil at different stalled angles of attack. Aerospace Science and Technology, 69, 76-86. https://doi.org/10.1016/j.ast.2017.06.020
Fala, N. (2022). An analysis of fixed-wing stall-type accidents in the United States. Aerospace, 9(4), 178. https://doi.org/10.3390/aerospace9040178
Feero, M. A., Goodfellow, S. D., Lavoie, P., & Sullivan, P. E. (2015). Flow reattachment using synthetic jet actuation on a low-Reynolds-number airfoil. AIAA Journal, 53(7), 2005-2014. https://doi.org/10.2514/1.J053605
Feero, M. A., Lavoie, P., & Sullivan, P. E. (2017). Influence of synthetic jet location on active control of an airfoil at low Reynolds number. Experiments in Fluids, 58, 1-12. https://doi.org/10.1007/s00348-017-2387-x
Goodarzi, M., Rahimi, M., & Fereidouni, R. (2012). Investigation of active flow control over NACA0015 airfoil via blowing. International Journal of Aerospace Sciences, 1(4), 57-63 https://doi.org/10.5923/j.aerospace.20120104.01
Goodfellow, S. D., Yarusevych, S., & Sullivan, P. (2010, January). Low Reynolds number flow control over an airfoil using synthetic jet actuators. ASME International Mechanical Engineering Congress and Exposition (Vol. 44441, pp. 909-915). https://doi.org/10.1115/IMECE2010-39728
Gupta, S., Zhao, J., Sharma, A., Agrawal, A., Hourigan, K., & Thompson, M. C. (2023). Two-and three-dimensional wake transitions of a NACA0012 airfoil. Journal of Fluid Mechanics, 954, A26. https://doi.org/10.1017/jfm.2022.958
Han, L., Wei, D., Wang, Y., & Zhang, X. (2021). Vortex-induced vibration mechanism of the NACA 0012 airfoil based on a method of separating disturbances. Journal of Sound and Vibration, 501, 116044. https://doi.org/10.1016/j.jsv.2021.116044
Itsariyapinyo, P., & Sharma, R. (2016). NACA0015 circulation control airfoil using synthetic jets at low angles of attack and low reynolds number. 8th AIAA Flow Control Conference. https://doi.org/10.2514/6.2016-3772
Khan, M. A., Masood, S., Anwer, S. F., Khan, S. A., & Arif, M. R. (2023). Vortex induced vibration for mixed convective flow past a square cylinder. International Journal of Heat and Mass Transfer, 202, 123722. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123722
Kim, D. H., & Chang, J. W. (2014). Low-Reynolds-number effect on the aerodynamic characteristics of a pitching NACA0012 airfoil. Aerospace Science and Technology, 32(1), 162-168. https://doi.org/10.1016/j.ast.2013.08.018
Kim, D. H., Yang, J. H., Chang, J. W., & Chung, J. (2009, January). Boundary layer and near-wake measurements of NACA 0012 airfoil at low Reynolds numbers. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.200
Kim, M., Essel, E. E., & Sullivan, P. E. (2022). Effect of varying frequency of a synthetic jet on flow separation over an airfoil. Physics of Fluids, 34(1). pp. https://doi.org/10.1063/5.0077334
Klochkov, V. V., & Kritskaya, S. S. (2017). Forecasting the impact of economic sanctions on the development of the Russian aircraft industry. Studies on Russian Economic Development, 28, 616-623. https://doi.org/10.1134/S107570071706003X
Kurtulus, D. F. (2015). On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re= 1000. International journal of micro air vehicles, 7(3), 301-326. https://doi.org/10.1260/1756-8293.7.3.301
Kurtulus, D. F. (2019). Unsteady aerodynamics of a pitching NACA 0012 airfoil at low Reynolds numbers. International Journal of Micro Air Vehicles, 11, 1756829319890609. https://doi.org/10.1177/1756829319890609
Lei, J., Zhang, J., & Niu, J. (2020). Effect of active oscillation of local surface on the performance of low Reynolds number airfoil. Aerospace Science and Technology, 99, 105774. https://doi.org/10.1016/j.ast.2020.105774
Lindstrom, A., Monastero, M., & Amitay, M. (2018). The flow physics of synthetic jets interaction with flow over a flapped airfoil. 2018 Flow Control Conference. https://doi.org/10.2514/6.2018-4019
Lou, B., Ye, S., Wang, G., & Huang, Z. (2019). Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration. Applied Mathematics and Mechanics, 40(1), 1-12. https://doi.org/10.1007/s10483-019-2404-8
Monastero, M. C., & Amitay, M. (2016). Performance enhancement of an airfoil model with a control surface using synthetic jets. 8th AIAA Flow Control Conference. https://doi.org/10.2514/6.2016-3305
Monastero, M. C., Lindstrom, A. M., & Amitay, M. (2019). Effect of synthetic jet spacing on flow separation over swept, flapped airfoils. AIAA Journal, 57(11), 4670-4683. https://doi.org/10.2514/1.J058304
Moshfeghi, M., & Hur, N. (2017). Numerical study on the effects of a synthetic jet actuator on S809 airfoil aerodynamics at different flow regimes and jet flow angles. Journal of Mechanical Science and Technology, 31, 1233-1240. https://doi.org/10.1007/s12206-017-0222-1
Nedić, J., & Vassilicos, J. C. (2015). Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications AIAA Journal, 53(11), 3240-3250. https://doi.org/10.2514/1.J053834
Neve, M., Kalamkar, V. R., & Wagh, A. (2017, December). Numerical analysis of NACA aerofoil using synthetic jet. In Gas Turbine India Conference (Vol. 58509, p. V001T01A006). American Society of Mechanical Engineers. https://doi.org/10.1115/GTINDIA2017-4587
Nguyen, D. H., Lowenberg, M. H., & Neild, S. A. (2022). A Frequency-Domain Approach to Analysing Dynamic Deep Stall Recovery. In AIAA SCITECH 2022 Forum (p. 1935). https://doi.org/10.2514/6.2022-1935.
Pradhan, A., Arif, M. R., Afzal, M. S., & Gazi, A. H. (2022). On the origin of forces in the wake of an elliptical cylinder at low Reynolds number. Environmental Fluid Mechanics, 22(6), 1307-1331. https://doi.org/10.1007/s10652-022-09892-z
Rodríguez, I., Lehmkuhl, O., Borrell, R., & Oliva, A. (2013). Direct numerical simulation of a NACA0012 in full stall. International Journal of Heat and Fluid Flow, 43, 194-203. https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2013.05.002
Saadi, M. C., & Bahi, L. (2018). Effect of jet width and momentum coefficient of active control over NACA0012 airfoil using synthetic jet. Journal Homepage, 36(4), 1443-1449. https://doi.org/10.18280/ijht.360437
Shan, H., Jiang, L., Liu, C., Love, M., & Maines, B. (2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil. Computers & fluids, 37(8), 975-992. https://doi.org/10.1016/j.compfluid.2007.10.010
Shen, X., Avital, E., Rezaienia, M. A., Paul, G., & Korakianitis, T. (2017). Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior. Journal of Algorithms & Computational Technology, 11(1), 68-82. https://doi.org/10.1177/1748301816665527
Singh, D. K., Jain, A., & Paul, A. R. (2021). Active flow control over a NACA23012 airfoil using hybrid jets. Defence Science Journal, 71(6), 721-729. https://doi.org/10.14429/DSJ.71.16468
Tadjfar, M., & Kamari, D. (2020). Optimization of flow control parameters over SD7003 airfoil with synthetic jet actuator. Journal of Fluids Engineering, 142(2), 021206. https://doi.org/10.1115/1.4044985
Tang, Z. L., Sheng, J. D., Zhang, G. D., & Periaux, J. (2018). Large-scale separation flow control on airfoils with synthetic jet. International Journal of Computational Fluid Dynamics, 32(2-3), 104-120. https://doi.org/10.1080/10618562.2018.1508656
Wang, C., & Tang, H. (2018). Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control. Bioinspiration & Biomimetics, 13(4), 046005. https://doi.org/10.1088/1748-3190/aabdb9
Wang, J., & Wu, J. (2020). Aerodynamic performance improvement of a pitching airfoil via a synthetic jet. European Journal of Mechanics-B/Fluids, 83, 73-85. https://doi.org/10.1016/j.euromechflu.2020.04.009
Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M., & Wu, J. M. (1998). Post-stall flow control on an airfoil by local unsteady forcing. Journal of Fluid Mechanics, 371, 21-58. https://doi.org/10.1017/S0022112098002055
Yang, E., Ekmekci, A., & Sullivan, P. E. (2022). Phase evolution of flow controlled by synthetic jets over NACA 0025 airfoil. Journal of Visualization, 25(4), 751-765. https://doi.org/10.1007/s12650-021-00824-5
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2009). On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics, 632, 245-271. https://doi.org/10.1017/S0022112009007058
Yen, S. C., & Hsu, C. M. (2007). Investigation on vortex shedding of a swept-back wing. Experimental Thermal and Fluid Science, 31(8), 849-855. https://doi.org/10.1016/j.expthermflusci.2006.09.001
You, D., & Moin, P. (2008). Active control of flow separation over an airfoil using synthetic jets. Journal of Fluids and Structures, 24(8), 1349-1357. https://doi.org/10.1016/j.jfluidstructs.2008.06.017
Zhang, W., & Samtaney, R. (2015). A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil. Physics of Fluids, 27(5), https://doi.org/10.1063/1.4919599
Zhang, Z., Wang, T., Wang, Y., & Guo, H. (2020, July). Effect of suction and blowing control on NACA 0012 airfoil at low Reynolds number. Journal of Physics: Conference Series (Vol. 1600, No. 1, p. 012040). IOP Publishing. https://doi.org/10.1088/1742-6596/1600/1/012040