AlMutairi, J., ElJack, E., & AlQadi, I. (2017). Dynamics of laminar separation bubble over NACA-0012 airfoil near stall conditions.
Aerospace Science and Technology,
68, 193-203.
https://doi.org/do10.1016/j.ast.2017.05.015
Arif, M. R., & Hasan, N. (2019a). Performance of characteristic numerical boundary conditions for mixed convective flows past a heated square cylinder using a non-Boussinesq approach.
Numerical Heat Transfer, Part A: Applications,
76(4), 254-280.
https://doi.org/10.1080/10407782.2019.1627828
Arif, M. R., & Hasan, N. (2019b). Vortex shedding suppression in mixed convective flow past a square cylinder subjected to large-scale heating using a non-Boussinesq model.
Physics of Fluids,
31(2),
https://doi.org/10.1063/1.5079516
Arif, M. R., & Hasan, N. (2021). Effect of free-stream inclination and buoyancy on flow past a square cylinder in large-scale heating regimes.
Physics of Fluids,
33(7).
https://doi.org/10.1063/5.0054766
Cao, S., Dang, N., Ren, Z., Zhang, J., & Deguchi, Y. (2020). Lagrangian analysis on routes to lift enhancement of airfoil by synthetic jet and their relationships with jet parameters.
Aerospace Science and Technology,
104, 105947.
https://doi.org/10.1016/j.ast.2020.105947.
Couto, N., & Bergada, J. M. (2022). Aerodynamic efficiency improvement on a NACA-8412 airfoil via active flow control implementation.
Applied Sciences,
12(9), 4269.
https://doi.org/10.3390/app12094269
Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G., & Succi, S. (2018). Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method.
Computers & Fluids,
166, 200-208.
https://doi.org/10.1016/j.compfluid.2018.02.014
Di, G., Wu, Z., & Huang, D. (2017). The research on active flow control method with vibration diaphragm on a NACA0012 airfoil at different stalled angles of attack.
Aerospace Science and Technology,
69, 76-86.
https://doi.org/10.1016/j.ast.2017.06.020
Feero, M. A., Goodfellow, S. D., Lavoie, P., & Sullivan, P. E. (2015). Flow reattachment using synthetic jet actuation on a low-Reynolds-number airfoil.
AIAA Journal,
53(7), 2005-2014.
https://doi.org/10.2514/1.J053605
Feero, M. A., Lavoie, P., & Sullivan, P. E. (2017). Influence of synthetic jet location on active control of an airfoil at low Reynolds number.
Experiments in Fluids,
58, 1-12.
https://doi.org/10.1007/s00348-017-2387-x
Goodfellow, S. D., Yarusevych, S., & Sullivan, P. (2010, January).
Low Reynolds number flow control over an airfoil using synthetic jet actuators. ASME International Mechanical Engineering Congress and Exposition (Vol. 44441, pp. 909-915).
https://doi.org/10.1115/IMECE2010-39728
Gupta, S., Zhao, J., Sharma, A., Agrawal, A., Hourigan, K., & Thompson, M. C. (2023). Two-and three-dimensional wake transitions of a NACA0012 airfoil.
Journal of Fluid Mechanics,
954, A26.
https://doi.org/10.1017/jfm.2022.958
Han, L., Wei, D., Wang, Y., & Zhang, X. (2021). Vortex-induced vibration mechanism of the NACA 0012 airfoil based on a method of separating disturbances.
Journal of Sound and Vibration,
501, 116044.
https://doi.org/10.1016/j.jsv.2021.116044
Itsariyapinyo, P., & Sharma, R. (2016).
NACA0015 circulation control airfoil using synthetic jets at low angles of attack and low reynolds number. 8th AIAA Flow Control Conference.
https://doi.org/10.2514/6.2016-3772
Khan, M. A., Masood, S., Anwer, S. F., Khan, S. A., & Arif, M. R. (2023). Vortex induced vibration for mixed convective flow past a square cylinder.
International Journal of Heat and Mass Transfer,
202, 123722.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123722
Kim, D. H., & Chang, J. W. (2014). Low-Reynolds-number effect on the aerodynamic characteristics of a pitching NACA0012 airfoil.
Aerospace Science and Technology,
32(1), 162-168.
https://doi.org/10.1016/j.ast.2013.08.018
Kim, D. H., Yang, J. H., Chang, J. W., & Chung, J. (2009, January).
Boundary layer and near-wake measurements of NACA 0012 airfoil at low Reynolds numbers. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
https://doi.org/10.2514/6.200
Kim, M., Essel, E. E., & Sullivan, P. E. (2022). Effect of varying frequency of a synthetic jet on flow separation over an airfoil.
Physics of Fluids,
34(1). pp.
https://doi.org/10.1063/5.0077334
Klochkov, V. V., & Kritskaya, S. S. (2017). Forecasting the impact of economic sanctions on the development of the Russian aircraft industry.
Studies on Russian Economic Development,
28, 616-623.
https://doi.org/10.1134/S107570071706003X
Kurtulus, D. F. (2015). On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re= 1000.
International journal of micro air vehicles,
7(3), 301-326.
https://doi.org/10.1260/1756-8293.7.3.301
Kurtulus, D. F. (2019). Unsteady aerodynamics of a pitching NACA 0012 airfoil at low Reynolds numbers.
International Journal of Micro Air Vehicles,
11, 1756829319890609.
https://doi.org/10.1177/1756829319890609
Lei, J., Zhang, J., & Niu, J. (2020). Effect of active oscillation of local surface on the performance of low Reynolds number airfoil.
Aerospace Science and Technology,
99, 105774.
https://doi.org/10.1016/j.ast.2020.105774
Lindstrom, A., Monastero, M., & Amitay, M. (2018).
The flow physics of synthetic jets interaction with flow over a flapped airfoil. 2018 Flow Control Conference.
https://doi.org/10.2514/6.2018-4019
Lou, B., Ye, S., Wang, G., & Huang, Z. (2019). Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration.
Applied Mathematics and Mechanics,
40(1), 1-12.
https://doi.org/10.1007/s10483-019-2404-8
Monastero, M. C., & Amitay, M. (2016).
Performance enhancement of an airfoil model with a control surface using synthetic jets. 8th AIAA Flow Control Conference.
https://doi.org/10.2514/6.2016-3305
Monastero, M. C., Lindstrom, A. M., & Amitay, M. (2019). Effect of synthetic jet spacing on flow separation over swept, flapped airfoils.
AIAA Journal,
57(11), 4670-4683.
https://doi.org/10.2514/1.J058304
Moshfeghi, M., & Hur, N. (2017). Numerical study on the effects of a synthetic jet actuator on S809 airfoil aerodynamics at different flow regimes and jet flow angles.
Journal of Mechanical Science and Technology,
31, 1233-1240.
https://doi.org/10.1007/s12206-017-0222-1
Nedić, J., & Vassilicos, J. C. (2015). Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications
AIAA Journal,
53(11), 3240-3250.
https://doi.org/10.2514/1.J053834
Neve, M., Kalamkar, V. R., & Wagh, A. (2017, December).
Numerical analysis of NACA aerofoil using synthetic jet. In Gas Turbine India Conference (Vol. 58509, p. V001T01A006). American Society of Mechanical Engineers.
https://doi.org/10.1115/GTINDIA2017-4587
Nguyen, D. H., Lowenberg, M. H., & Neild, S. A. (2022). A Frequency-Domain Approach to Analysing Dynamic Deep Stall Recovery. In
AIAA SCITECH 2022 Forum (p. 1935).
https://doi.org/10.2514/6.2022-1935.
Pradhan, A., Arif, M. R., Afzal, M. S., & Gazi, A. H. (2022). On the origin of forces in the wake of an elliptical cylinder at low Reynolds number.
Environmental Fluid Mechanics,
22(6), 1307-1331.
https://doi.org/10.1007/s10652-022-09892-z
Saadi, M. C., & Bahi, L. (2018). Effect of jet width and momentum coefficient of active control over NACA0012 airfoil using synthetic jet.
Journal Homepage,
36(4), 1443-1449.
https://doi.org/10.18280/ijht.360437
Shan, H., Jiang, L., Liu, C., Love, M., & Maines, B. (2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil.
Computers & fluids,
37(8), 975-992.
https://doi.org/10.1016/j.compfluid.2007.10.010
Shen, X., Avital, E., Rezaienia, M. A., Paul, G., & Korakianitis, T. (2017). Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior.
Journal of Algorithms & Computational Technology,
11(1), 68-82.
https://doi.org/10.1177/1748301816665527
Singh, D. K., Jain, A., & Paul, A. R. (2021). Active flow control over a NACA23012 airfoil using hybrid jets.
Defence Science Journal,
71(6), 721-729.
https://doi.org/10.14429/DSJ.71.16468
Tadjfar, M., & Kamari, D. (2020). Optimization of flow control parameters over SD7003 airfoil with synthetic jet actuator.
Journal of Fluids Engineering,
142(2), 021206.
https://doi.org/10.1115/1.4044985
Tang, Z. L., Sheng, J. D., Zhang, G. D., & Periaux, J. (2018). Large-scale separation flow control on airfoils with synthetic jet.
International Journal of Computational Fluid Dynamics,
32(2-3), 104-120.
https://doi.org/10.1080/10618562.2018.1508656
Wang, C., & Tang, H. (2018). Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
Bioinspiration & Biomimetics,
13(4), 046005.
https://doi.org/10.1088/1748-3190/aabdb9
Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M., & Wu, J. M. (1998). Post-stall flow control on an airfoil by local unsteady forcing.
Journal of Fluid Mechanics,
371, 21-58.
https://doi.org/10.1017/S0022112098002055
Yang, E., Ekmekci, A., & Sullivan, P. E. (2022). Phase evolution of flow controlled by synthetic jets over NACA 0025 airfoil.
Journal of Visualization,
25(4), 751-765.
https://doi.org/10.1007/s12650-021-00824-5
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2009). On vortex shedding from an airfoil in low-Reynolds-number flows.
Journal of Fluid Mechanics,
632, 245-271.
https://doi.org/10.1017/S0022112009007058
Zhang, W., & Samtaney, R. (2015). A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil.
Physics of Fluids,
27(5),
https://doi.org/10.1063/1.4919599
Zhang, Z., Wang, T., Wang, Y., & Guo, H. (2020, July).
Effect of suction and blowing control on NACA 0012 airfoil at low Reynolds number. Journal of Physics: Conference Series (Vol. 1600, No. 1, p. 012040). IOP Publishing.
https://doi.org/10.1088/1742-6596/1600/1/012040