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ABSTRACT 

Regarding the airfoil optimization design of multi-rotor unmanned aerial 

vehicles, this paper proposes an integral airfoil design method based on upper 

airfoil contour optimization. Firstly, by designing concave descent input curves 

with 0-1 distribution, the upper arc of different optimized airfoils is obtained 

using the Tangent circles method. Secondly, an integral airfoil generation 

method is developed after establishing the middle arc. As the upper and lower 

arcs of different shapes are randomly combined, various airfoil profiles are 

obtained by random assortment. Finally, the effectiveness and accuracy of the 

designed airfoil are validated through Python programming. The airfoil is 

generated by the XFOIL program, and the optimal airfoil is output with a lift-to-

drag ratio as the target. Meanwhile, an accurate Fluent analysis model is 

established, and a comparison verification is conducted on the data with the 

attack angle falling within [-8.02, 12.04] and lift-to-drag ratio falling within [-

50, 100]. After Fluent modeling of the designed airfoil, the Euclidean distance 

between the calculated angle-lift-drag ratio data curve and the data curve tested 

by the wind tunnel is 0.0331, while the Euclidean distance between the simulated 

data in the literature and the wind tunnel data is 0.0408. It indicates that our 

precise model achieves 18.9% higher accuracy than the literature model. Testing 

and verification results indicate that our designed airfoil based on upper arc 

optimization and its corresponding airfoil library can meet the design 

requirements for the aerodynamic performance of airfoils in practical 

applications. It provides a valuable reference for the development of airfoil 

design, optimization, and generation methods. 
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1. INTRODUCTION 

Wing profile optimization plays a crucial role in 

enhancing the transportation efficiency, flight quality, and 

aerodynamic performance of unmanned aerial vehicles, 

and it is an essential element for generating the required 

lift for aircraft navigation and various flight maneuvers 

while ensuring stability and maneuverability. Despite the 

presence of various wing profile series and the 

construction of wing profile databases by many countries, 

there does not exist nor is it possible to have a single super 

wing profile that is universally applicable to all airflow 

conditions and flight states, while meeting all desired 

expectations. The geometric description of the wing 

profile significantly affects the efficiency of wing profile 

optimization, so it is crucial and necessary to investigate 

the aerodynamic shape of wing profiles, explore 

optimization design methods, and develop high-

performance wing profiles.  

In recent years, for the development of wing design 

and optimization methods, the main themes and key 

technologies of related research mainly focus on the 

following three aspects: 

(1) Airfoil design method based on sparse weighted 

parameters 

The current research hotspot is the adoption of wing 

profiles or the development based on existing wing 

profiles. The design method for the wing profile of the 

current rotorcraft mainly reduces the dimension of the 

design space by using parameterization methods. Early 

parametric design methods for wing profile optimization 

usually employed the convex function (Bump) method 
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(Lepine et al., 2001; Bharadwaj et al., 2016). The basic 

function is weighted and superimposed on the basic airfoil, 

and the shape of the airfoil is changed by the control factor. 

This type of method requires only a few control 

parameters to optimize the upper and lower surfaces of the 

airfoil, and any airfoil can be utilized as the initial airfoil 

for optimization. However, this method also has obvious 

defects: it cannot guarantee the smoothness of the airfoil 

and has a significant impact on the aerodynamic 

characteristics. Thus, it is necessary to make a balance and 

compromise between computational simplicity and 

aerodynamic performance. 

(2) More complicated parameterized airfoil design 

method 

The wing profile optimization design method that utilizes 

fewer weighting parameters in its early stages is the 

opposite. In recent years, the advancement of high-

performance computing hardware and computer-aided 

design (CAD) has prompted the use of parameterized 

curves for wing profile design, which can automatically 

maintain the smoothness of the wing profile. Currently, 

there are three main categories of parameterization 

methods for wing profiles. The first category of method is 

based on basis functions, which are combined linearly to 

form smooth geometric perturbations and superimposed to 

obtain new wing profile curves. Representatives of such 

methods are the Hicks-Henne-type function method 

(Hicks & Henne, 1978; Zhou et al., 2021), Wagner-type 

function method (Ramamoorthy & Padmavathi, 1977), 

polynomial-type function method (Lee & Eyi, 1992), and 

class function/shape function transformation (CST) 

parametrization method (Kulfan, 2008; Akram & Kim, 

2021; Kou et al., 2023). The second category of method 

uses spline curves, such as B-spline (Wang et al., 2004; 

Nemec et al., 2004; Leung & Zingg, 2009; Fujii & 

Dulikravich, 2013; Zakaria et al., 2021), non-uniform 

rational B-spline (NURBS) (Lepine et al., 2001; Guibault 

et al., 2002; Painchaud-Ouellet et al., 2006; Sevilla et al., 

2011; Li et al., 2015; Aghabeigi et al., 2022), Bezier 

curves (Mengistu & Ghaly, 2002; Prautzsch et al., 2002), 

etc. To approximate the wing profile curve. The third 

category of method is based on wing profile characteristic 

parameters (e.g., maximum camber position) (Zhang et al., 

2018), and the wing profile curve is usually represented 

with edge radius, maximum thickness position, and 

trailing edge angle. Different parameterized geometric 

models have different abilities in describing the 

optimization search space, and a good parametrization 

method not only fully captures the small changes in the 

airfoil surface but also enhances the optimization efficiency. 

Therefore, the main issue restricting the flexibility of 

the airfoil design is that more control parameters are 

required to achieve higher efficiency. However, an excess 

of parameters can lead to redundancy, which does not 

always guarantee a smoother generation of airfoils. 

(3) Airfoil optimization design method combined 

with intelligent algorithms 

With the improvement of computer performance and the 

development of numerical methods, research on wing 

optimization design tends to combine wing 

parameterization with optimization algorithm simulation 

to obtain the optimal wing shape. Emerging intelligent 

algorithms, such as deep learning (Li et al., 2022), neural 

networks (Khurana et al., 2008; Sun et al., 2015; Sekar et 

al., 2019), genetic algorithms (Vicini & Quagliarella, 

1997; Gardner & Selig, 2003; Huang et al., 2006), and 

multi-objective networks, are favored by researchers and 

have been applied in wing generation studies. For instance, 

Buckley and Zingg (Buckley & Zingg, 2013) developed a 

multi-point optimization design method based on Pareto 

fronts by calculating the weighted objective function, 

which can not only optimize the aerodynamic shape of 

supersonic civil aircraft but also optimize the long-

distance and long-endurance flight performance of 

unmanned aerial vehicles (UAV). Based on CFD 

technology, Chen and Agarwal (Chen & Agarwal 2014) 

used multi-objective genetic algorithms in the 

optimization process to eliminate shock waves and 

improve lift coefficients for supersonic wing shape 

optimization.  

Though this approach of using intelligent algorithms 

for wing optimization is feasible and effective, it needs a 

large dataset of wing shapes in the wing library to train the 

intelligent algorithms, and the quality of the wing shapes 

in the library directly affects the quality of the wing shapes 

designed by the intelligent algorithms. 

Therefore, considering the aforementioned issues and 

the defects of existing research, this paper proposes a 

computationally efficient and high-performance method 

for rapid airfoil generation and optimization. In the design 

process, a unique design approach is adopted, which 

consists of the following three aspects: 

(1) Starting from the input curve, the upper arc 

generation process for the airfoil is optimized to address 

the optimization issue of specific airfoils from the source 

(corresponding to Section 3 of the article). 

(2) Based on the designed upper arc, numerous 

specific samples are generated rapidly by combining 

programming languages with airfoil library generation, 

thus solving the problem of generating massive airfoil 

library data from a methodological perspective 

(corresponding to Section 4 of the article). 

(3) By taking aerodynamic parameters as 

optimization constraints, specific airfoils are selected 

rapidly using Xfoil software and precise airfoil models, 

are then they are generated using Fluent. These models are 

compared and validated with wind tunnel test data to 

verify the practicality and effectiveness of the designed 

airfoil (corresponding to Section 5 of the article). 

2. OVERVIEW OF THE AIRFOIL DESIGN PROCESS 

A typical mainly consists of four parts: leading edge, 

trailing edge, upper surface or suction side, and lower 

surface or pressure side. The airfoil is determined by 

several key features, including camber, thickness, leading 

edge radius, and trailing edge angle. Nevertheless, these 

are all traditional airfoil characteristics, and many other 

specific parameters exist, such as the position of the 

center of the incircle of the leading edge radius, the angle  
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Fig. 1 Typical airfoil structure 

 

 

Fig. 2 Airfoil design framework 

 

between the chord line and the line connecting the center 

of the incircle and the leading edge point, the ratio of the 

transverse coordinate of the maximum thickness point to 

the chord length, as well as the angle between the airfoil 

shape and the chord line of the upper and lower surfaces. 

All these factors affect the overall shape of the airfoil and 

thus its aerodynamic characteristics. The typical airfoil 

structure is illustrated in Fig. 1, with its overall shape 

composed of upper and lower arc lines, and some detailed 

features such as thickness are presented in the figure. In 

this section, a new airfoil generation algorithm is proposed 

based on mathematical methods and geometric thinking, 

combined with Python programming software. This 

algorithm considers the main factors that affect the 

aerodynamic characteristics of the airfoil. 

In this section, the process of developing a 

multidisciplinary design framework for modeling and 

analysis of different airfoil shapes is introduced. Given the 

description of each step in the airfoil design process, this 

framework performs an automated evaluation of the airfoil 

based on optimized aerodynamic performance metrics. 

The term "automated evaluation" refers to the use of 

programming languages to jointly utilize the software and 

execute it in batch mode. The developed design 

framework is shown in Fig. 2. 

Step 1: The optimal design of the upper arc, which 

will be described in Section 3. The upper arc of the airfoil 

is generated by utilizing the Tangent circles method and 

exploiting the distribution characteristics of concave 

functions and binary distribution input curves, such as 

power functions and polynomials. 

Step 2: The generation of airfoil libraries, which will 

be described in Section 4. Firstly, the arc in the airfoil is 

designed. Since the mid arc is located between the upper 

and lower arcs, the coordinates of the lower arc can be 

obtained by interpolating the coordinates of the upper and 

mid arcs, thereby ensuring the smoothness of the lower arc. 

Then, the overall airfoil and airfoil library are generated, 

and the complete airfoil curve is obtained by combining 

the upper and lower arcs. Subsequently, the airfoil library 

is formed through the random configuration of different 

upper and lower arcs. 

Step 3: Validation and analysis, which will be 

described in Section 5. Firstly, the wind tunnel data of 

reference literature on airfoils is taken for comparison and 

validation. Using Python language, numerous feature 

airfoils with different thickness characteristics are 

generated. Then, the XFOIL program is invoked using 

Python for rapid selection, whereby non-converging 

airfoil calculation samples are removed. Next, the lift-to-

drag ratio characteristics of airfoils with different 

thicknesses are compared and analyzed to determine the 

optimal airfoil that exhibits the highest consistency with 

the aerodynamic characteristics of the target airfoil in the 

wind tunnel data. Finally, the selected airfoil is validated 

using Fluent software to evaluate its consistency with the 

GAW-1 airfoil curve in the reference literature, and the 

curve-fitting error is calculated. In this process, XFOIL 

can be also used for calculations, but singular points may 

appear, whereas this issue can be addressed by using 

Fluent. A comparison of the results from the two software 

programs is provided. 
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Fig. 3 Tangent circles with different leading-edge 

radii 

 

3. OPTIMAL DESIGNING OF UPPER ARC 

In this section, a new algorithm is proposed for 

generating the contour line of the upper airfoil, according 

to the main factors that affect the aerodynamic 

characteristics of the airfoil (the method of arc angle 

intersection of the circle inner tangent radius). 

3.1 Upper arc Design Idea 

As mentioned above, many feature factors need to be 

considered in the design of airfoil parameters. Research on 

airfoil parameter design has indicated that the position of 

the inflection point on the upper arc and the thickness of 

the airfoil have a significant impact on the smoothness and 

aerodynamic performance of the airfoil. In this section, by 

using the method of "intersection of radius and arc angle 

of an inscribed circle", the upper arc of the airfoil, which 

meets the design requirements, is constructed by changing 

the radius and arc angle of the inscribed circle. The 

construction process involves the following three steps. 

3.1.1 Tangent Circles Method 

The outer contour of the upper arc is generated using 

the method of "intersection of radius and arc angle of an 

inscribed circle". By changing the radius and angle of the 

tangential circle, the corresponding coordinate values of 

the front edge radius and angle in a two-dimensional 

Cartesian coordinate system are obtained, where the initial 

outer contour of the upper arc is constructed using a 

parameter equation.  

A two-dimensional Cartesian coordinate system is 

established, with the origin (0,0)startO =  at the leading 

edge and the chord as the X-axis of the wing. The origin is 

the starting point of the upper arc contour, and the chord 

length of the airfoil is set to C. The coordinate of the 

endpoint finalO  of the upper arc contour is (C,0). The 

center of the tangent circle is placed within the space of 

the X-axis airfoil string, and the line x = 0 is externally  

tangent to all tangent circles, as illustrated in Fig. 3. The 

range of the tangent circle's radius xR  is [0, ]
2

C
, where 

0xR =  corresponds to a point at the center (0,0). When  

 
Fig. 4 Determination of arc Angle 

 

2
x

C
R = , it corresponds to the circle with 36

2

C
r =  in the 

diagram, with the center at [ , 0]
2

C
, and this circle also 

passes through points (0,0) and (C,0). Additionally, 

1
64

C
r =  and 18

4

C
r =  represent tangent circles with 

different radii in the diagram. 

3.1.2 The Generation of Upper Arc  

The determination of the angular arc is shown in Fig. 

4. A tangent circle with an arbitrary center 1( ,0)cr r=  is 

selected, and an arbitrary reference angle alpha is selected 

within the tangent circle, where alpha is given as 

Prc startO . Given a known radius of the tangent circle, 

the coordinate values of point P corresponding to the circle 

can be obtained using the parametric coordinate equation 

of the circle. 

The cartesian coordinates of point P are solved as 

follows, 

1 1

1

cos( )

cos( )

p

p

x r r alpha

y r alpha





= + −


= −
                                          (1) 

where, xp represents the abscissa of point P, yp represents 

the ordinate of point P, and r1 denotes the abscissa value 

of the center of the circle. According to the geometric 

properties, it can be determined that [0, ]alpha  . When 

determining the values of Rx and alpha, there must exist 

one and only one radius and one angle for which the 

tangent of the arc on the airfoil is parallel to the x-axis, i.e., 

the derivative is zero, and the position of this point is 

closely related to the curvature of the arc. Then, within 

their respective ranges, Rx and alpha are divided into 36 

equal parts in ascending order, and one-to-one 

correspondences are established to form a new set RA=(Rx, 

alpha). By using the parametric equations of the circle, the 

coordinates (xi, yi) of the points on the arc of the airfoil in 

the Cartesian coordinate system corresponding to each 

pair (Rx, alpha) in RA are calculated, as demonstrated in 

Fig. 5. It can be seen that the upper arc has good smooth 

transition characteristics. However, the abscissa of the 

point with the maximum curvature of this curve is located  
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Fig. 5 Spline curve 

 

at 
2

C
, which does not meet the design requirements of the 

airfoil curvature (Zhang et al., 2018). Therefore, it is 

necessary to further optimize the distribution of sample 

points on this curve. 

The generated P points are connected, and the P 

points and spline curves are illustrated in Fig. 5. It can be 

found that the curve possesses very good smooth transition 

characteristics, but the horizontal coordinate of the 

maximum curvature point of the curve is at the position of 

2

C
, which has a curvature that does not meet the airfoil 

design conditions (Zhang et al., 2018), so the distribution 

of sample points of the curve should be further optimized. 

3.2 Comparison of Optimization Results of Three 

Different Input Curves 

For wing design, it is more reasonable to make the 

horizontal coordinate of the maximum point of the upper 

arc curvature range between (0, )
2

C
, as it can improve the 

aerodynamic and structural characteristics of the wing. To 

optimize the distribution of sample points that make up the 

upper arc of the wing, it is necessary to investigate the 

relationship between the distribution characteristics of the 

sample points and Rx, alpha. To obtain the sample point 

data under different distributions of the upper arc of the 

wing, the wing coordinates are standardized, with the 

maximum and minimum values of the horizontal 

coordinate being 1 and 0, respectively. Therefore, a 

concave function input curve with a distribution range 

between (0, 1) can be adopted to design the sample points 

on the upper arc of the wing. The concave function input 

curve with a distribution range between 0 and 1 is taken as 

a distribution control coefficient. Therefore, to generate 

concave function curves and explore their influence on the 

characteristics of the upper arc, this paper analyzes the 

power function, three-point polynomial fitting function, 

and user-defined function curves to select the most 

suitable concave function input curve for the 0-1 

distribution. 

3.2.1 The Power Function Optimizes the Distribution 

of Arc Points on the Airfoil 

To obtain the sample point data under different 

distributions of the upper airfoil contour lines, functions 

between (0,1) are employed to optimize the sample point 

distribution of the spline curve.  

The expression of the power function is shown in 

formula (2), 

ay x=                                                                             (2) 

If [0,1]y , where the range of x is [0,1]x , and 

C=100, then the function is monotonically increasing 

when a > 0. Thus, the value of ‘a’ determines the variation 

trend of the power function curve, and in this case, the data 

transformation for Rx and alpha can be represented by 

formula (3):  

*

*

xR y C

alpha y 

=


=
                                                               (3) 

In the following, the progress of choosing the value 

of a is discussed: 

(1) Calculation interval of ‘a’ 

Firstly, the interval [0.1,3]  is taken as an initial range 

for the calculation to find out how the value of ‘a’ affects 

the distribution of sample points on the contour line of the 

upper arc. Given a step size of 0.1, the power function 

curve is shown in Fig. 6, where the position of the triangle 

point corresponds to the maximum curvature point of the 

curve. 

Dividing the power function curve into 200 equal 

parts leads to 200 control points on the upper arc line. 

Reversing the order of these points yields a monotonically 

decreasing function. By using the aforementioned 

geometric and parametric equations, the coordinates of 

each point on the upper arc line and the outline of the 

upper wing surface are comprehensively derived, as 

illustrated in Fig. 7. 

(2) Influence on upper airfoil under different values 

of ‘a’ 

By taking all the points on the upper arc in Fig. 7 

where the derivative is equal to zero, Fig. 8 is plotted. 

From the upper arc in the figure, it can be seen that when 

a < 0.5, the wing profile curve exhibits poor continuity, 

mainly characterized by a significant lack of continuity in 

the trailing edge. For 0.4 < a ≤ 3, the abscissa of the points, 

where the change rate of the upper arc is zero, shows a 

decreasing trend as a increases. When a ≤1, the points  
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Fig. 6 Power function curves of different a values 

 

 

Fig. 7 Contour line of the upper airfoil 

 

 

Fig. 8 Points for which the derivative of the contour line of the upper airfoil is 0 

 

where the derivative of the upper arc is zero approach the 

trailing edge of the upper arc, and this contradicts the 

distribution pattern of aerodynamic characteristics. 

Therefore, curves within this range are discarded. Only 

when a > 1, i.e., when the input function curve is located 

below the line y = x, the abscissa of the points for which 

the change rate of the curve is zero approaches the range 

(0, )
2

C
, providing a constraint for subsequent optimization 

of the upper arc of the wing profile. 
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In particular, when a=3.5, the spline curve shown in 

Fig. 9 can be obtained. The curve in this case is extremely 

unreasonable, and the ordinate values of sample points at 

the rear edge of the upper airfoil contour line are almost 

equal, which does not meet the airfoil selection criteria. 

The function corresponding to the fitting curve is 

expressed below, 

y A B=                                                                         (4) 

1.660e-08

-3.603e-06

 3.250e-04

-1.578e-02

4.440e-01

-7.203e+00

6.277e+01

-2.25e+02

A

 
 
 
 
 
 

=
 
 
 
 
 
 
 

, ( )7 6 5 4 3 2, , , , , , ,1B x x x x x x x=           (5) 

where A is an 8×1 matrix containing the coefficients of 

independent variables of the polynomials, and B is a 1×8 

matrix containing the independent variable of the 

polynomials. 

In particular, when a=3.5, the spline curve as shown 

in Fig. 9 can be obtained. It can be seen that the upper arc 

generated in this case is extremely unreasonable, and the 

ordinate values of the sample points at the back edge of 

the upper arc are almost equal, which does not meet the 

airfoil selection criteria. 

(3) The more focused interval of ‘a’ 

To ensure the smoothness of the upper airfoil contour 

and the rationality of the data, a comprehensive 

consideration is made, and a value of [1.5,2.54]a  is 

chosen, with the interval determined according to specific 

requirements. Assuming a step size of 0.08, the generated 

upper arc spline curve is shown in Fig. 10. It can be 

observed that the generated upper arc is relatively 

reasonable, but it exhibits a relatively singular upper arc 

feature. 

3.2.2 Function Curve Features Are Fitted with Given 

Control Points 

Due to the great functional limitations of power 

functions, a reverse control method using given control 

points can be utilized to fit a polynomial curve function 

with multiple points. The desired functional shape of the 

curve on the airfoil can be selected by choosing 

appropriate points, enabling control over the curve of the 

arc. In this section, polynomial functions are used to 

obtain the solution, and three polynomial control points 

are used to describe the fitting function curve, thereby 

ensuring a gradual decay in the coordinates of the control 

points and that the control points are below the line y = x. 

The expression for the control points is given in equation 

(6). 

1

2 2 2

3

(0,1)

( , )

(1,0)

x y

P

P P P

P

=

=

=

                                                               (6) 

where P2 is a randomly generated point in (0,1), and it is 

located under the line y = x. The horizontal and vertical 

coordinates P2x and P2y of point P2 satisfy: 

2 (0,1)yP random=                                                         (7) 

2 2(1 )* tan( )x yP P = −                                                   (8) 

(0, )
4

random


 =                                                         (9) 

Using Python programming, a quadratic polynomial 

fitting is performed on three control points to obtain the 

function equation, as shown in Fig. 11. In the figure, 

( , )i i iP x y=  is the intersection point of the curve and the 

line y=0, and the other parameter definitions have been 

described previously. 

 

Fig. 9 Spline curve of upper airfoil contour when a=3.5 

 

 

Fig. 10 Spline curve of the upper wing surface when [1.5,2.54]a  
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Fig. 11 Quadratic polynomial fitting control points 

 

 

Fig. 12 Optimization of the control point function 

 

It is obvious that point P2 is located below the line y 

= x. However, there is an issue with the fitting curve. As 

indicated by the curve below the line y = 0 in Fig. 11, the 

region where 3iPP  is negative is unreasonable in terms of 

upper arc design. According to computational theory, this 

directly leads to negative bending in the upper arc. 

Therefore, an optimization algorithm needs to be used 

here, and its basic idea is to iteratively evaluate and 

remove the negative region within the curve and then 

perform a scaling transformation on the remaining curve. 

The scaling ratio is defined as the ratio between the 

abscissa of P3 (Px3=1) and the abscissa of Pi (Pxi) in the 

flowchart. This ensures that both the x and y values fall 

within the correct and reasonable range. The basic 

flowchart is demonstrated in Fig. 12. 

The calculated values (y) obtained by fitting a 

quadratic polynomial are used for the theoretical 

calculation to generate 100 upper arc lines, as shown in 

Fig. 13. The randomness of the data points is controlled to 

make them fall below the line y = x, resulting in the upper 

arc lines, as shown in Fig. 14. The optimized upper arc 

lines demonstrate better control effectiveness compared to 

the power function. 

 

Fig. 13 Upper arc (uncontrolled random points) 

 

 

Fig. 14 Upper arc (control random points) 

 

  

Fig. 15 Three-point control spline curve 

 

3.2.3 Three Points Control Spline Curve  

According to the method for generating the upper arc 

curve of the airfoil in this paper, the three-point control 

spline curve generation method is employed to optimize 

the input function. The algorithm for generating the three 

control points is consistent with that introduced in Section 

3.1.2. The following curve is an exception input 

distribution spline curve, so the following mainly 

discusses the case where the input spline curve has a 

negative region, as shown in Fig. 15. 

If the interval points of the input spline curve are not 

processed, the upper arc is directly generated, as shown in 

Fig. 16. 

When y is less than zero, the corresponding upper 

curve first moves downward and then upward, and it may 

intersect with the chord line at both ends of the airfoil, 

making the shape of the leading edge highly unreasonable. 

Therefore, the distribution of input spline curves has a 

significant impact on the upper curve. Consequently, it is 

necessary to optimize and reconstruct the input spline  
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Fig. 16 Generated upper arc 

 

 

Fig. 17 Spline curve optimization algorithm 

 

curve for the upper curve of the airfoil. In this study, the 

approach of moving point P2 in the positive direction of 

the vertical axis is adopted to manipulate the spline curve. 

The figure on the right demonstrates the result after the 

manipulation. The optimization algorithm is illustrated in 

Fig. 17. 

Firstly, the interval point information is processed 

based on the analysis results, and P2 is moved in the 

direction of the Y-axis. As P2 moves, the spline curve 

between P1 and P3 will also move accordingly. In this case, 

the movement of P2 to the position Pb must satisfy the 

following computational conditions: 

2by ydistance P P= −                                                   （10) 

( ) , 0.1 ( )y ydistance min P n t t min P= +   =                 (11) 

, 0
i j i j

yj yi

P P P P

xj xi

P P
K K

P P

−
= 

−
                                            (12) 

where, n represents the number of times to control the 

range of movement of point P2. Pi and Pj represent any two 

adjacent points between P2 and P3, and their coordinate 

values must satisfy a decreasing condition determined by 

formula 12. If this condition is not met, the value of n 

needs to be modified, and the input curve optimization 

process should be repeated. The original spline curve and 

the optimized spline curve are shown in Fig. 18. 

The optimized spline curve is taken as the input curve to 

generate the upper arc curve. The generated upper arc 

curve with the optimization is illustrated in Fig. 19. 

 

Fig. 18 Original and the optimized spline curves 

 

From Fig. 19, it can be observed that the optimized 

upper curve significantly complies with the requirements 

of airfoil design. By extending the research on this design 

method, as shown in Fig. 20, 90 airfoil upper curves are 

generated. The generated airfoil upper curves are smooth, 

and most of them are reasonably satisfactory. 

To investigate the relationship between the position 

of points on the wing profile with a curvature of zero and 

the coordinates of the middle control points in the input 

curve, according to the middle control point generation 

rules (Equations 7, 8, 9), it is sufficient to investigate the 

vertical coordinate of the middle control point P2 and its 

positional relationship with the angle α and the points on 

the wing profile with a curvature of zero. Firstly, 10,000 

wing profile samples are generated, and the coordinates of 

the middle control point and the points on the wing profile 

with a curvature of zero are preprocessed. Within a certain 

range of y-values, the effects of α and the vertical 

coordinate of the middle control point on the horizontal 

and vertical coordinates of the points on the wing profile 

with a curvature of zero are discussed separately. 

As illustrated in Fig. 21, the rationality and 

generation speed of the composite spline curve are 

considered. When the value range of y is set to 

0.25 0.76y  , as the value of α increases, the abscissa 

of the point where the rate of change of the arc on the wing 

shape is zero increases gradually, demonstrating a 

predominantly monotonic increasing characteristic. When 

0.67y  , there is a sudden change in the curve's trailing 

edge. 

 

 
Fig. 19 Optimized upper arc 
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Fig. 20 90 airfoil upper arcs 

 

 

Fig. 21 Relation between α value and the point with zero rate of arc change on airfoil 

 

 

Fig. 22 Analysis of mutation points 

 

Among these, the four points PA, PB, PC, and PD 

denote the starting positions of the discontinuity, and both 

the value of α and the abscissa of the discontinuity 

decrease gradually with the increasing y-value, 

demonstrating a linear relationship between the four 

discontinuity stages, as illustrated in Fig. 22. 

Through statistical analysis of the generated airfoil, it 

is found that the horizontal coordinate range of the point 

with the maximum curvature on the upper arc of the airfoil  
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Fig. 23 Relationship between the value of α and the ordinate of the curve where the change rate of the airfoil is 

zero 

 

 
Fig. 24 Determination of the middle arc 

 

 
Fig. 25 Overall airfoil curve 

 

satisfies the required criteria. The relationship between the 

vertical coordinate of the point where the curvature of the 

upper arc of the airfoil is zero and α is presented in Fig. 23. 

Under different y values, as the value of α increases, the 

vertical coordinate values of the point where the curvature 

of the upper arc of the airfoil is zero grow exponentially. 

Through a comprehensive analysis of the three 

methods for generating the upper contour of the airfoil 

based on the aforementioned input curves, it is found that 

the third method using the control point spline curve 

exhibits the fastest speed, highest sample quantity, and 

perfect preservation of the input curve features. 

Meanwhile, when the positions of the randomly generated 

control points are not reasonable, curve optimization and 

reconstruction can be achieved through rapid control point 

translation. 

4. THE GENERATION OF AIRFOIL LIBRARIES  

Based on the generation of upper curved arcs, a 

design methodology for the mid-arc has been proposed. 

The overall wing profile is obtained by controlling the 

wing profile thickness. Meanwhile, a method for 

generating composite wing profiles is proposed to enhance 

the wing profile characteristics. 

4.1 Middle arc Design Method 

Taking the optimized upper arc curve in Section 2.2 

as an example, the control concept is to scale the ordinate 

of the upper arc curve. Figure 24 illustrates the resulting 

middle arc curve, which is generated by scaling the 

ordinate of the original upper arc curve by 35 percent. 

4.2 Integral Airfoil Generation 

Following the definition of the wing airfoil's middle 

curve, the coordinates of the upper curve and middle curve 

are interpolated and averaged to obtain the position 

coordinates of the lower curve. The lower curve is 

generated by combining the upper curve and the lower 

curve. The overall wing airfoil curve is presented in Fig. 

25. 

4.2.1 Airfoil Thickness Control 

The maximum height of the upper arc determines the 

maximum potential thickness that the overall airfoil can 

achieve, and the maximum gap between the upper arc and 

middle arc determines the thickness of the entire airfoil.  
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Fig. 26 Five airfoil curves 

 

 
Fig. 27 90 airfoils based on the random recombination of the edges of 10,000 types of upper and lower arcs 

 

Therefore, before determining the overall shape of the 

airfoil, it is necessary to determine the position of the 

maximum thickness coordinate point on the upper arc, 

specify the target thickness, and determine the position of 

the middle camber in reverse order, thereby forming the 

mean camber line. To better optimize the thickness of the 

airfoil, this paper defines a thickness control formula in 

the following form: 

2 (1 )a iT S Y q= −                                                           (13) 

where, Sa denotes the scaling factor for the maximum 

thickness of the upper curve, Sa > 0, Yi denotes the ordinate 

of the control point of the upper curve, and q is a scaling 

factor. Figure 26 shows five wing profile curves generated 

with different settings of control thickness factors Sa and 

q. It can be clearly seen that not only the wing thickness 

can be accurately controlled, but also the shape of the wing 

profile can be transformed. By comparing and selecting a 

large amount of generated wing profile simulation data, it 

is found that the variation in the irregular curve is more 

pronounced when q falls within the range [0.37,0.71]. 

Therefore, the interval of [0.37,0.71] is selected for 

display in Fig. 26. 

4.2.2 Airfoil Library Generation 

The section presents a method for generating a large 

range of airfoil contours so that an airfoil library can be 

established. Based on the aforementioned wing generation 

approach, research on wing generation can be conducted 

by using existing wing algorithms to control the 

generation of upper and lower wing profiles for all wing 

shapes. The upper and lower profiles are stored separately 

in sets A and B, respectively. Then, profiles are randomly 

selected from sets A and B for recombination. In principle, 

assuming set A has m upper arcs and set B has n lower arcs, 

this leads to a total of m*n wing shape libraries. Figure 27 

demonstrates 90 wing shapes obtained by randomly 

recombining the upper and lower profiles of 10,000 wing 

shapes. These wing shapes exhibit more diverse 

characteristics. 

5. VALIDATION AND ANALYSIS 

To verify the compliance of the proposed wing 

design method with aerodynamic performance 

requirements, a standardized wing profile is randomly 

selected for analysis, with reference to the wind tunnel 

data of a certain wing type. 

5.1 Generation of Airfoils with Different Thickness 

Ranges 

The specific parameter settings of the selected airfoil 

are as follows: the maximum thickness position and 

maximum camber position are at 28.53% of the chord 

length. The airfoil thickness is taken as the optimization 

variable, the thickness varies with an initial value of 2.52% 

of the chord length. The variation in airfoil thickness is 

indicated by the blue arrow in Fig. 28, with the final 

thickness at 17.64% of the chord length. 
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Fig. 28 Airfoils with different thickness ranges 

 

To guarantee the smoothness of the wing surface, a 

reverse processing operation is adopted. Firstly, the 

smoothing operation is performed in the XFOIL program, 

followed by re-outputting the wing coordinates. This 

section focuses only on reliable validation of the self-

designed airfoil and presents an optimization method that 

utilizes Python + XFOIL for preliminary rapid 

optimization to select reasonable airfoil shapes. Then, an 

accurate analysis model is constructed using Ansys Fluent 

to calculate the precise aerodynamic parameters of the 

initially optimized airfoil.  

A total of 1000 airfoil shapes with equidistantly 

selected initial and final thicknesses are generated. The 

airfoil thickness is taken as the optimization parameter, 

and the maximum lift-to-drag ratio is taken as the 

objective parameter. Owing to the fast calculation speed 

of the XFOIL program, it satisfies the requirement for 

batch processing optimization. Therefore, the optimal 

thickness airfoil is first computed using Python to invoke 

the XFOIL program and determine the airfoil with the 

highest lift-to-drag ratio. Next, Fluent is employed to 

construct a wind tunnel space for the two-dimensional 

airfoil, enabling a more detailed analysis of the airfoil 

optimized by XFOIL. The lift-to-drag characteristics of 

the optimized airfoil are provided, which lays the technical 

foundation for subsequent three-dimensional wing design. 

5.2 Rapid Airfoil Selection Based on XFOIL Software 

An optimal aerodynamic performance curve needs to 

be selected from the airfoil generated in Section 5.1, to 

achieve rapid selection through the XFOIL software. 

When adding a Reynolds number of 6e+6, an angle 

of attack of 2°, and a Mach number of 0.15, the variation 

of lift-to-drag ratio for the airfoil within the thickness 

between 2.52% and 17.62% of the chord length is shown 

in Fig. 29. It can be observed that as airfoil thickness 

increases, the lift-to-drag ratio initially increases and then 

gradually stabilizes, and finally, it decreases with a further 

increase in airfoil thickness. The green triangle and red 

triangle points in Fig. 29 correspond to the airfoil 

thicknesses of 10.18% and 13.09% of the chord length, 

respectively, with both exhibiting a maximum lift-to-drag 

ratio of 97.59. Therefore, further investigation is 

performed on the two airfoil thicknesses corresponding to 

the two largest lift-to-drag ratios in the figure. Relatively 

thicker airfoils exhibit greater structural strength but lead 

to increased weight and cost. Therefore, it is necessary to 

further optimize the structural strength of three-

dimensional wings in future research. 

 

Fig. 29 Relationship between Cl/Cd and thickness 

parameters 

 

 

Fig. 30 Airfoil and gauge pressure curves 

 

Figure 30 presents the airfoil shapes and 

corresponding pressure distribution curves of green and 

red points. Though the lift-to-drag ratios for both airfoil 

shapes are almost identical, the pressure distribution plot 

illustrates that the airfoil with a thickness of 10.48% 

exhibits a smoother pressure distribution and more gradual 

fluctuation, demonstrating superior aerodynamic 

characteristics compared to the airfoil with a thickness of 

13.09%. 

Therefore, the wing profile with a thickness of 10.18% 

is selected for further analysis, as shown in Fig. 31. 

5.3 Comparison of Verification Results 

This section compares the lift-to-drag ratio of the 

airfoil obtained in Section 5.2 with the results in the literature 
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Fig. 31 The optimized airfoil 

 

 
Fig. 32 Comparison between the flow field grid model and its own model 

 

(Ribeiro et al., 2012). Meanwhile, the airfoil experimental 

data and airfoil studied in the literature (McGhee, 1980; 

Ribeiro et al., 2012) are taken as the research model to 

verify the effectiveness of the Fluent calculation model 

and ensure the accuracy of the subsequent optimization of 

the independent design model.  

Fluent 2023 R1 is employed as a simulation tool in 

this section, and the experiments in the literature are 

verified. In the test, far-field boundary conditions were 

employed, and a Shear-Stress Transport (SST) k-ω model 

was adopted, the attack angle is 8.02°, the Mach number 

is 0.15, the Reynolds number is 6e+6 for the setting 

condition, and the far-field distance is equal to 340 times 

the string length. 

The verification process begins with the 

establishment of the flow field grid model, and Python is 

used to create the grid in the study.  

The computational domain for simulation is 

illustrated in Fig. 32 (a). These grids are created following 

the first-tier grid height computing theory and have the 

following characteristics:  

(1) the grid height of the first layer of the airfoil 

surface is y.  

(2) the ratio of height variation from the airfoil 

surface to the far-field boundary grid is 1.1.  

(3) the diameter of the calculation domain is set to 

340 times the chord length to achieve a fully developed 

flow.  

(4) the surface mesh size of the airfoil is 3, and there 

are 110 nodes in the far field radius. 

Based on the pressure data and lift-to-drag ratio data 

obtained from simulations and experiments in the 

references, pressure coefficient graphs were generated by 

comparing the XFOIL and Fluent models in this study 

with the experimental model, as shown in Fig. 33. The 

simulated results closely match the experimental results in 

terms of pressure coefficient, particularly for the Fluent 

model, which demonstrates a high level of agreement with 

the experimental data. Though the pressure coefficient 

graph obtained from the XFOIL program is slightly 

different from both the Fluent model and the experimental 

results in the vicinity of the maximum pressure location 

on the upper curve of the airfoil, the overall trends are 

consistent. Therefore, it can be inferred that utilizing the 

XFOIL program for preliminary optimization is compliant 

with computational standards. 

Then, by using the aforementioned model, the lift-to-

drag ratio curves were calculated, as shown in Fig. 34. The 

reference data for comparison were obtained from the 

reference (Ribeiro et al., 2012). The value ranges for 

attack angle and lift-to-drag ratio are [-8.02, 12.04] and [-

50, 100], respectively. After precise fluent modeling of the 

designed airfoil, the Euclidean distance between the wind 

tunnel data and our modeled data is 0.0331. In contrast, 

the Euclidean distance between the simulation data in the 

reference literature and the wind tunnel data is 0.0408.  
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Fig. 33 Pressure coefficient  

 

 
Fig. 34 Curve of the lift-drag ratio  

 

 
Fig. 35 Pressure coefficient distribution results 

 

Therefore, our precision model achieves 18.9% higher 

accuracy than the literature model, with a higher curve 

similarity. Thus, this validation model exhibits good 

precision and provides support for accurate computational 

models in future research. 

The pressure coefficient calculations were performed 

on airfoils with thicknesses of 10.18% and 13.09% 

respectively, and the results are illustrated in Fig. 35. From 

this figure, it can be observed that the pressure coefficient 

distributions obtained from the Fluent computational 

model exhibit a high degree of consistency with those 

obtained from the XFOIL program. However, the pressure 

coefficient distribution curves obtained from the XFOIL 

program are not as smooth as those obtained from the 

Fluent model. This further confirms the validity of using 



Z. Wang et al. / JAFM, Vol. 17, No. 5, pp. 1112-1128, 2024.  

 

1127 

the XFOIL program for rapid selection and then the Fluent 

computational model for detailed optimization, thus 

laying a sound technical foundation for airfoil selection in 

subsequent three-dimensional wing design. 

6. CONCLUSION 

Based on mathematical computation and geometric 

thinking, this paper proposes an original wing design 

method and develops an optimization algorithm that 

combines Python programming. The XFOIL program is 

utilized to generate wing profiles in batch processing, and 

the optimal wing profile is output based on the lift-to-drag 

ratio as the optimization objective. Besides, a precise 

Fluent analysis model is established. The main 

conclusions of this paper are as follows: 

(1) The upper arc line is optimized by combining 

mathematical computation and geometric thinking. This 

method has strong scalability. By designing different 

concave functions with a 0-1 distribution, various upper 

arc lines can be obtained. 

(2) An airfoil library generation method is proposed. 

The lower profile line is determined by the contour line of 

the upper wing profile and the middle curve, allowing 

precise control of the wing thickness. Meanwhile, by 

adding a random control factor to the wing thickness, 

many different wing profiles can be generated. Then, the 

contour lines of the upper and lower wing profiles are 

randomly combined to enrich the generated airfoil profile 

library. 

(3) The aerodynamic performance of the devised 

airfoil is validated by XFOIL and Fluent tools. An 

optimization algorithm is designed to select the optimal 

wing profile from multiple wings with equal thickness. 

Also, a Fluent model is established for accuracy analysis. 

Besides, comparative verification is carried out using the 

research wing profile from literature data, with the attack 

angle ranging from [-8.02, 12.04] and the lift-to-drag ratio 

ranging from [-50, 100]. After accurate Fluent modeling, 

it is found that the Euclidean distance between the 

designed wing profile and wind tunnel data is 0.0331, 

while the Euclidean distance between the simulated data 

in literature and wind tunnel data is 0.0408. The proposed 

model achieves 18.9% higher accuracy than the model in 

the literature, and the curve similarity is higher. The results 

indicate that the proposed integral airfoil profile 

generation algorithm based on upper airfoil contour 

optimization has significant advantages in terms of 

accuracy and overall analysis speed while exhibiting high 

scalability. 
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