Arshad, A., Li, Q., Li, S., & Pan, T. (2018). Effects of inlet radial distortion on the type of stall precursor in low-speed axial compressor.
Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering,
232(1), 55-67.
https://doi.org/10.1177/0954410016670679
Back, S. C., Hobson, G. V., Song, S. J., & Millsaps, K. T. (2010). Effect of surface roughness location and Reynolds number on compressor cascade performance.
ASEM Paper, GT2010-22208.
https://doi.org/10.1115/GT2010-22208
Back, S. C., Hobson, G. V., Song, S. J., & Millsaps, K. T. (2012). Effects of Reynolds number and surface roughness magnitude and location on compressor cascade performance.
Journal of Turbomachinery,
134(5), 051013-1~051013-6.
https://doi.org/10.1115/1.4003821
Bolinches-Gisbert, M., Robles, D. C., Corral, R., & Gisbert, F. (2020). Prediction of Reynolds number effects on low-pressure turbines using a high-order ILES method.
Journal of Turbomachinery, 142 (3), 031002.
https://doi.org/10.1115/1.4045776
Camp, T. R., & Day, I. J. (1998). A study of spike and modal stall phenomena in a low-speed axial compressor.
ASME Journal of Turbomachinery,
120, 393-401.
https://doi.org/10.1115/97-GT-526
Carullo, J. S., Nasir, S., Cress, R. D., Ng, W. F., & Thole, K. A. (2011). The effects of freestream turbulence, turbulence length scale, and exit Reynolds number on turbine blade heat transfer in a transonic cascade.
Journal of Turbomachinery,
133(1), 011030.
https://doi.org/10.1115/1.4001366
Chen, Z. Y., Wu, Y. H., Zhang, Y. W., Gan, J. W., & Jin, H. Y. (2019). Circumferential propagation characteristic of unsteady flow in a subsonic axial flow compressor rotor at different Reynolds numbers.
ASME Paper, GT2019-91498.
https://doi.org/ 10.1115/GT2019-91498
Citavy, J., & Norbury, J. F. (1977). Effect of Reynolds number and turbulence intensity on the performance of a compressor cascade with prescribed velocity distribution.
Journal of Mechanical Engineering Science,
19(3), 93-100.
https://doi.org/10.1243/JMES_JOUR_1977_019_022_02
Diehl, M., Schreiber, C., & Schiffmann, J. (2020). The role of Reynolds number effect and tip leakage in compressor geometry scaling at low turbulent Reynolds numbers.
Journal of Turbomachinery,
142(3), 031003.
https://doi.org/ 10.1115/1.4045465
Enomoto, S., Hah, C., & Hobson, G. V. (2000). Numerical and experimental investigation of low Reynolds number effects on laminar flow separation and transition in a cascade of compressor blades. ASME Paper, GT2000-0276.
Farahani, A. S., Amiri, H. B., Khazaei, H., Madadi, A., & Fathi, A. (2012). The Effect of Reynolds number on transonic compressor blade rotor section.
ASME Paper, GTINDIA2012-9639.
https://doi.org/10.1115/GTINDIA2012-9639
Hadavandi, R., Fontaneto, F., & Desset, J. (2018). Complete characterization of a highly loaded low pressure compressor at different Reynolds numbers for computational fluid dynamics simulations.
Journal of Turbomachinery,
140(6), 061008.
https://doi.org/ 10.1115/1.4039727
Hathaway, M. D. (2007). Passive endwall treatments for enhancing stability. NASA Report, NASA/TM-2007-214409.
Hayashibara, S., Myose, R. Y., & Kok, F. (2013). Effect of solidity on the generation of entropy in a low Reynolds number compressor cascade. 2013 Aviation Technology, Integration, and Operations Conference, AIAA 2013-4416.
Hayashibara, S., Myose, R. Y., Mark, R. D., & Walsh, E. D. (2006). Determining the entropy generated in a low Reynolds number compressor cascade based on the wake velocity profile. 6th AIAA Aviation Technology, Integration, and Operations Conference, AIAA 2006-7810.
Hobson, G. V., Hansen, D. J., Schnorenberg, D. G., & Grove, D. V. (2001). Effect of Reynolds number on separation bubbles on compressor blades in cascade.
Journal of Propulsion and Power,
17(1), 154-162.
https://doi.org/10.2514/2.5721
Hutchings, J., & Hall, C. (2020). The effects of Reynolds number on the stall and pre-stall behaviour of compact axial compressors.
ASME Paper, GT2020-15384.
https://doi.org/ 10.1115/GT2020-15384
Im, J. H., Shin, J. H., Hobson, G. V., Song, S. J., & Millsaps, K. T. (2013). Effect of leading edge roughness and Reynolds number on compressor profile loss.
ASME Paper, GT2013-95487.
https://doi.org/ 10.1115/GT2013-95487
Kato, H., Taniguchi, H., Matsuda, K., Funazaki, K., Kato, D., & Pallot, G. (2011). Experimental and numerical investigation on compressor cascade flows with tip clearance at a low Reynolds number condition.
Journal of Thermal Science,
20(6), 481-485.
https://doi.org/10.1007/s11630-011-0499-9
Kim, J., Jeon, H., Jung, Y., Park, J. Y., & Choi, M. (2018). Effects of low Reynolds number on performance in a centrifugal compressor.
Transactions of the Japan Society for Aeronautical and Space Sciences,
61(6), 238-247.
https://doi.org/10.2322/tjsass.61.238
Kok, F., Myose, R. Y., & Hayashibara, S. (2015).
Comparison of theoretical and semi-empirical solutions for dissipation coefficient in a low Reynolds number compressor cascade. 45th AIAA Fluid Dynamics Conference, AIAA 2015-2314.
https://doi.org/10.2514/6.2015-2314
Lazaro, B. J., Gonzalez, E., Cadrecha, D., Antoranz, A., & Parra, J. (2017). Low Reynolds number response of high efficiency, intermediate pressure compressor profiles.
ASME Paper, GT2017-63283.
https://doi.org/10.1115/GT2017-63283
Maffioli, A., Hall, C. A., & Melvin, S. (2015). Aerodynamics of low Reynolds number axial compressor sections.
53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1934.
https://doi.org/10.2514/6.2015-1934
Matthias, R., Martin, L., Konrad, V., & Ronald, M. (2017). Experimental and numerical investigation of a circumferential groove casing treatment in a low speed axial research compressor at different tip clearances.
ASME Paper, GT2017-6305.
https://doi.org/10.1115/GT201763051
McDougall, N. M., Cumpsty, N. A., & Hynes, T. P. (1990). Stall inception in axial compressors.
Journal of Turbomachinery,
112, 116-125.
https://doi.org/10.1115/89-GT-63
Myose, R. Y., & Hayashibara, S. (2009).
Effect of stagger angle on the generation of entropy in a low Reynolds number compressor cascade. 9th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, AIAA 2009-6940.
https://doi.org/10.2514/6.2009-6940
Myose, R. Y., Lietsche, J., Scholz, D., Zingel, H., Hayashibara, S., & Heron, I. (2006).
Flow visualization study on the effect of a Gurney flap in a low Reynolds number compressor cascade. 6th AIAA Aviation Technology, Integration, and Operations Conference, 2: 992-1002.
https://doi.org/10.2514/6.2006-7809
Ni, Y., Chen, J., Fu, X., Huang, G., Zhang, Z., & Zhu, R. (2019). Flow characteristics of centrifugal compressor stage under low Reynolds number.
The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology,
459, 513-522.
https://doi.org/10.1007/978-981-13-3305-7_42
Pantelidis, K., & Hall, C. A. (2017).
Reynolds number effects on the aerodynamics of compact axial compressors. 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC2017-277.
https://doi.org/10.29008/etc2017-277
Pym, S. A., Asghar, A., Allan, W. D. E., & Clark, J. P. (2019). A low Reynolds number experimental evaluation of tubercles on a low-pressure turbine cascade.
ASME Paper, GT2019-91699.
https://doi.org/10.1115/GT2019-91699
Schaffler, A. (1980). Experimental and analytical investigation of the effects of Reynolds number and blade surface roughness on multistage axial flow compressors.
Journal of Engineering for Power,
102, 5-12.
https://doi.org/10.1115/1.3230232
Schreiber, H., Steinert, W., & Kusters, B. (2002). Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade.
Journal of Turbomachinery,
124(1), 1-9.
https://doi.org/10.1115/1.1413471
Schreiber, H., Steinert, W., Sonoda, T., & Arima, T. (2004). Advanced high-turning compressor airfoils for low Reynolds number condition - Part II: Experimental and numerical analysis.
Journal of Turbomachinery,
126(4), 482-492.
https://doi.org/10.1115/1.1737781
Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., & Schreiber, H. (2003). Advanced high turning compressor airfoils for low Reynolds number condition Part1: Design and optimization.
ASME Paper, GT2003-38458.
https://doi.org/10.1115/GT2003-38458
Sun, D., Li, J., Dong, X., Gu, B., Sun, X. (2018). Effects of rotating inlet distortion on two-stage compressor stability with stall precursor-suppressed casing treatment.
ASME Paper, GT2018-76701.
https://doi.org/10.1115/GT2018-76701
Tan, C. S., Day, I., Morris, S., & Wadia, A. (2010). Spike-type compressor stall inception, detection, and control.
Annual Review of Fluid Mechanics,
42, 275-300.
https://doi.org/10.1146/annurev-fluid-121108-145603
Toyotaka, S., Yoshihiro, Y., Toshiyuki, A., Markus, O., Bernhard, S., & Heinz A. S. (2003). Advanced high turning compressor airfoils for low Reynolds number condition part1: design and optimization.
ASME paper, GT2003-38458.
https://doi.org/10.1115/GT2003-38458
Valdes, M., Sebastian, A., & Abbas, R. (2018). Reynolds-number-dependent efficiency characterization of a micro-scale centrifugal compressor using non-conventional working fluids.
Energy Conversion and Management, 177, 224-232.
https://doi.org/10.1016/j.enconman.2018.09.055
Wang, M., Li, Z., Zhao, S., Zhang, Y., & Lu, X. (2020). Effects of Reynolds number and loading distribution on the aerodynamic performance of a high subsonic compressor airfoil.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
234(8), 1069-1083.
https://doi.org/10.1177/0957650919899541
Wang, M., Yang, C., Li, Z., Zhao, S., Zhang, Y., & Lu, X. (2021). Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number.
Chinese Journal of Aeronautics,
34 (3), 71-81.
https://doi.org/10.1016/j.cja.2020.08.020
Wang, W., Lu, J., Luo, X., Huang, R., & Chu, W. (2020). Failure mechanism of slot casing treatment in improving stability of a highly-loaded axial compressor stage.
Aerospace Science and Technology,
105, 105979.
https://doi.org/10.1016/j.ast.2020.105979
Weinberg, M., & Wyzykowski, J. (2001). Development and testing of a commercial turbofan engine for high altitude UAV applications. SAE Technical Papers, 2001, SAE World Aviation Congress - 2001 Aerospace Congress.
https://doi.org/10.4271/2001-01-2972
Wilke, I., Kau, H. P., & Brignole, G. (2005). Numerically aided design of a high-efficient casing treatment for a transonic compressor.
ASME Paper, GT2005-68993.
https://doi.org/10.1115/GT2005-68993
Zhao, S., Lu, X., Zhu, J., Ge, H., & Yang, C. (2015). Effects of low Reynolds number on flow stability of a transonic compressor.
Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering,
229(4), 601-611.
https://doi.org/10.1177/0954410014537803
Zheng, X., Lin, Y., Gan, B., Zhuge, W., & Zhang, Y. (2013). Effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor.
Science China-Technological Sciences, 56(6), 1361-1369.
https://doi.org/10.1007/s11431-013-5213-6
Zhou, E., Cheng, S., Liu, K., Zhang, W., & Wang, Y. (2015). Study of the compressor system’s debugging in 0.6m continuous wind tunnel.
Fluid Machinery, 43(11), 10-15(Chinese).
https://doi.org/10.3969/j.issn.1005-0329.2015.11.003