Effects of the Reynolds Number on the Efficiency and Stall Mechanisms in a Three-stage Axial Compressor

Document Type : Regular Article

Authors

High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

The Reynolds number (Re) is an important parameter that can affect compressor performance. This study experimentally and numerically investigated the effect of Re variations on the efficiency and stall mechanisms for a three-stage axial flow compressor. In the experiment, the total pressure ratio, polytropic efficiency, and stalling mass flow rate were measured in a Re range varying from 1,100,000 to 55,000 to elucidate the Re effects. Unsteady three-dimensional numerical simulations were implemented to understand the stall mechanisms. The results indicate that the compressor efficiency and stall–pressure ratio begin to decrease remarkably as Re is reduced below a critical value, which is 220,000 in the case of the compressor studied. At a low Re, losses caused by the secondary flow near the hub and shroud increase remarkably, and the extended boundary layer separations at the blade suction surface further decrease the efficiency. The variation in Re changes the stall-initiated location. At higher Reynolds numbers, the interaction between the corner separation at the hub of stator 1 and the leakage flow through the blade tip gap induces a large vortex, which seriously blocks the blade passage. The blocking effect spreads to the aft stage and extends to higher spans, which results in the stall of the whole compressor. However, the blocking effect at the hub disappears at Re =55,000, and the interaction of the blade boundary layer separation near the shroud of rotor 1 and the tip leakage vortex causes a large blockage and then induces stall. The Re variation changes the radial flow transportation because of the varying effect on the aerodynamic performance of each blade element at different spans. This significantly influences the extent of the vortex near the end wall and ultimately changes the stall mechanisms.

Keywords

Main Subjects


Arshad, A., Li, Q., Li, S., & Pan, T. (2018). Effects of inlet radial distortion on the type of stall precursor in low-speed axial compressor. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 232(1), 55-67. https://doi.org/10.1177/0954410016670679
Back, S. C., Hobson, G. V., Song, S. J., & Millsaps, K. T. (2010). Effect of surface roughness location and Reynolds number on compressor cascade performance. ASEM Paper, GT2010-22208. https://doi.org/10.1115/GT2010-22208
Back, S. C., Hobson, G. V., Song, S. J., & Millsaps, K. T. (2012). Effects of Reynolds number and surface roughness magnitude and location on compressor cascade performance. Journal of Turbomachinery, 134(5), 051013-1~051013-6. https://doi.org/10.1115/1.4003821
Bolinches-Gisbert, M., Robles, D. C., Corral, R., & Gisbert, F. (2020). Prediction of Reynolds number effects on low-pressure turbines using a high-order ILES method. Journal of Turbomachinery, 142 (3), 031002. https://doi.org/10.1115/1.4045776
Camp, T. R., & Day, I. J. (1998). A study of spike and modal stall phenomena in a low-speed axial compressor. ASME Journal of Turbomachinery, 120, 393-401. https://doi.org/10.1115/97-GT-526
Carullo, J. S., Nasir, S., Cress, R. D., Ng, W. F., & Thole, K. A. (2011). The effects of freestream turbulence, turbulence length scale, and exit Reynolds number on turbine blade heat transfer in a transonic cascade. Journal of Turbomachinery, 133(1), 011030. https://doi.org/10.1115/1.4001366
Chen, H. (2020). Size and Reynolds number effects on compressor performance and scaling. ASME Paper, GT2020-14019. https://doi.org/10.1115/GT2020-14019
Chen, Z. Y., Wu, Y. H., Zhang, Y. W., Gan, J. W., & Jin, H. Y. (2019). Circumferential propagation characteristic of unsteady flow in a subsonic axial flow compressor rotor at different Reynolds numbers. ASME Paper, GT2019-91498. https://doi.org/ 10.1115/GT2019-91498
Citavy, J., & Norbury, J. F. (1977). Effect of Reynolds number and turbulence intensity on the performance of a compressor cascade with prescribed velocity distribution. Journal of Mechanical Engineering Science, 19(3), 93-100. https://doi.org/10.1243/JMES_JOUR_1977_019_022_02
Diehl, M., Schreiber, C., & Schiffmann, J. (2020). The role of Reynolds number effect and tip leakage in compressor geometry scaling at low turbulent Reynolds numbers. Journal of Turbomachinery, 142(3), 031003. https://doi.org/ 10.1115/1.4045465
Enomoto, S., Hah, C., & Hobson, G. V. (2000). Numerical and experimental investigation of low Reynolds number effects on laminar flow separation and transition in a cascade of compressor blades. ASME Paper, GT2000-0276.
Farahani, A. S., Amiri, H. B., Khazaei, H., Madadi, A., & Fathi, A. (2012). The Effect of Reynolds number on transonic compressor blade rotor section. ASME Paper, GTINDIA2012-9639. https://doi.org/10.1115/GTINDIA2012-9639
Hadavandi, R., Fontaneto, F., & Desset, J. (2018). Complete characterization of a highly loaded low pressure compressor at different Reynolds numbers for computational fluid dynamics simulations. Journal of Turbomachinery, 140(6), 061008. https://doi.org/ 10.1115/1.4039727
Hathaway, M. D. (2007). Passive endwall treatments for enhancing stability. NASA Report, NASA/TM-2007-214409.
Hayashibara, S., Myose, R. Y., & Kok, F. (2013). Effect of solidity on the generation of entropy in a low Reynolds number compressor cascade. 2013 Aviation Technology, Integration, and Operations Conference, AIAA 2013-4416.
Hayashibara, S., Myose, R. Y., Mark, R. D., & Walsh, E. D. (2006). Determining the entropy generated in a low Reynolds number compressor cascade based on the wake velocity profile. 6th AIAA Aviation Technology, Integration, and Operations Conference, AIAA 2006-7810.
Hobson, G. V., Hansen, D. J., Schnorenberg, D. G., & Grove, D. V. (2001). Effect of Reynolds number on separation bubbles on compressor blades in cascade. Journal of Propulsion and Power, 17(1), 154-162. https://doi.org/10.2514/2.5721
Hutchings, J., & Hall, C. (2020). The effects of Reynolds number on the stall and pre-stall behaviour of compact axial compressors. ASME Paper, GT2020-15384. https://doi.org/ 10.1115/GT2020-15384
Im, J. H., Shin, J. H., Hobson, G. V., Song, S. J., & Millsaps, K. T. (2013). Effect of leading edge roughness and Reynolds number on compressor profile loss. ASME Paper, GT2013-95487. https://doi.org/ 10.1115/GT2013-95487
Kato, H., Taniguchi, H., Matsuda, K., Funazaki, K., Kato, D., & Pallot, G. (2011). Experimental and numerical investigation on compressor cascade flows with tip clearance at a low Reynolds number condition. Journal of Thermal Science, 20(6), 481-485. https://doi.org/10.1007/s11630-011-0499-9
Kim, J., Jeon, H., Jung, Y., Park, J. Y., & Choi, M. (2018). Effects of low Reynolds number on performance in a centrifugal compressor. Transactions of the Japan Society for Aeronautical and Space Sciences, 61(6), 238-247. https://doi.org/10.2322/tjsass.61.238
Kok, F., Myose, R. Y., & Hayashibara, S. (2015). Comparison of theoretical and semi-empirical solutions for dissipation coefficient in a low Reynolds number compressor cascade. 45th AIAA Fluid Dynamics Conference, AIAA 2015-2314. https://doi.org/10.2514/6.2015-2314
Lazaro, B. J., Gonzalez, E., Cadrecha, D., Antoranz, A., & Parra, J. (2017). Low Reynolds number response of high efficiency, intermediate pressure compressor profiles. ASME Paper, GT2017-63283. https://doi.org/10.1115/GT2017-63283
Maffioli, A., Hall, C. A., & Melvin, S. (2015). Aerodynamics of low Reynolds number axial compressor sections. 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-1934. https://doi.org/10.2514/6.2015-1934
Matthias, R., Martin, L., Konrad, V., & Ronald, M. (2017). Experimental and numerical investigation of a circumferential groove casing treatment in a low speed axial research compressor at different tip clearances. ASME Paper, GT2017-6305. https://doi.org/10.1115/GT201763051
McDougall, N. M., Cumpsty, N. A., & Hynes, T. P. (1990). Stall inception in axial compressors. Journal of Turbomachinery, 112, 116-125. https://doi.org/10.1115/89-GT-63
Myose, R. Y., & Hayashibara, S. (2009). Effect of stagger angle on the generation of entropy in a low Reynolds number compressor cascade. 9th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, AIAA 2009-6940. https://doi.org/10.2514/6.2009-6940
Myose, R. Y., Lietsche, J., Scholz, D., Zingel, H., Hayashibara, S., & Heron, I. (2006). Flow visualization study on the effect of a Gurney flap in a low Reynolds number compressor cascade. 6th AIAA Aviation Technology, Integration, and Operations Conference, 2: 992-1002. https://doi.org/10.2514/6.2006-7809
Ni, Y., Chen, J., Fu, X., Huang, G., Zhang, Z., & Zhu, R. (2019). Flow characteristics of centrifugal compressor stage under low Reynolds number. The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology, 459, 513-522. https://doi.org/10.1007/978-981-13-3305-7_42
Pantelidis, K., & Hall, C. A. (2017). Reynolds number effects on the aerodynamics of compact axial compressors. 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC2017-277. https://doi.org/10.29008/etc2017-277
Pym, S. A., Asghar, A., Allan, W. D. E., & Clark, J. P. (2019). A low Reynolds number experimental evaluation of tubercles on a low-pressure turbine cascade. ASME Paper, GT2019-91699. https://doi.org/10.1115/GT2019-91699
Schaffler, A. (1980). Experimental and analytical investigation of the effects of Reynolds number and blade surface roughness on multistage axial flow compressors. Journal of Engineering for Power, 102, 5-12. https://doi.org/10.1115/1.3230232
Schreiber, H., Steinert, W., & Kusters, B. (2002). Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade. Journal of Turbomachinery, 124(1), 1-9. https://doi.org/10.1115/1.1413471
Schreiber, H., Steinert, W., Sonoda, T., & Arima, T. (2004). Advanced high-turning compressor airfoils for low Reynolds number condition - Part II: Experimental and numerical analysis. Journal of Turbomachinery, 126(4), 482-492. https://doi.org/10.1115/1.1737781
Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., & Schreiber, H. (2003). Advanced high turning compressor airfoils for low Reynolds number condition Part1: Design and optimization. ASME Paper, GT2003-38458. https://doi.org/10.1115/GT2003-38458
Sun, D., Li, J., Dong, X., Gu, B., Sun, X. (2018).  Effects of rotating inlet distortion on two-stage compressor stability with stall precursor-suppressed casing treatment. ASME Paper, GT2018-76701. https://doi.org/10.1115/GT2018-76701
Tan, C. S., Day, I., Morris, S., & Wadia, A. (2010). Spike-type compressor stall inception, detection, and control. Annual Review of Fluid Mechanics, 42, 275-300. https://doi.org/10.1146/annurev-fluid-121108-145603
Toyotaka, S., Yoshihiro, Y., Toshiyuki, A., Markus, O., Bernhard, S., & Heinz A. S. (2003). Advanced high turning compressor airfoils for low Reynolds number condition part1: design and optimization. ASME paper, GT2003-38458. https://doi.org/10.1115/GT2003-38458
Valdes, M., Sebastian, A., & Abbas, R. (2018). Reynolds-number-dependent efficiency characterization of a micro-scale centrifugal compressor using non-conventional working fluids. Energy Conversion and Management, 177, 224-232. https://doi.org/10.1016/j.enconman.2018.09.055
Wang, M., Li, Z., Zhao, S., Zhang, Y., & Lu, X. (2020). Effects of Reynolds number and loading distribution on the aerodynamic performance of a high subsonic compressor airfoil. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(8), 1069-1083. https://doi.org/10.1177/0957650919899541
Wang, M., Yang, C., Li, Z., Zhao, S., Zhang, Y., & Lu, X. (2021). Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number. Chinese Journal of Aeronautics, 34 (3), 71-81. https://doi.org/10.1016/j.cja.2020.08.020
Wang, W., Lu, J., Luo, X., Huang, R., & Chu, W. (2020). Failure mechanism of slot casing treatment in improving stability of a highly-loaded axial compressor stage. Aerospace Science and Technology, 105, 105979. https://doi.org/10.1016/j.ast.2020.105979
Wassell, A. B. (1968). Reynolds number effects in axial compressors. Journal of Engineering for Power, 149, 156. https://doi.org/10.1115/1.3609154
Weinberg, M., & Wyzykowski, J. (2001). Development and testing of a commercial turbofan engine for high altitude UAV applications. SAE Technical Papers, 2001, SAE World Aviation Congress - 2001 Aerospace Congress. https://doi.org/10.4271/2001-01-2972
Wilke, I., Kau, H. P., & Brignole, G. (2005). Numerically aided design of a high-efficient casing treatment for a transonic compressor. ASME Paper, GT2005-68993. https://doi.org/10.1115/GT2005-68993
Zhang, W., Zhou, E., Cheng, S., & Liu, K. (2017). Anti-surge model and control strategy of fan in wind tunnel. Journal of Aerospace Power, 32(6), 1434-1440(Chinese). https://doi.org/10.13224/j.cnki.jasp.2017.06.021
Zhang, X. (2020). Effects of Reynolds number on performance of highly loaded multi-stage axial compressors. ASME Paper, GT2020-14672. https://doi.org/10.1115/GT2020-14672
Zhao, S., Lu, X., Zhu, J., Ge, H., & Yang, C. (2015). Effects of low Reynolds number on flow stability of a transonic compressor. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 229(4), 601-611. https://doi.org/10.1177/0954410014537803
Zheng, X., Lin, Y., Gan, B., Zhuge, W., & Zhang, Y. (2013). Effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor. Science China-Technological Sciences, 56(6), 1361-1369. https://doi.org/10.1007/s11431-013-5213-6
Zhou, E., Cheng, S., Liu, K., Zhang, W., & Wang, Y. (2015). Study of the compressor system’s debugging in 0.6m continuous wind tunnel. Fluid Machinery, 43(11), 10-15(Chinese). https://doi.org/10.3969/j.issn.1005-0329.2015.11.003