AbdelSalam, A. M., & Ramalingam, V. (2014). Wake prediction of horizontal-axis wind turbine using full-rotor modeling.
Journal of Wind Engineering and Industrial Aerodynamics 124, 7–19.
https://doi.org/10.1016/j.jweia.2013.11.005
Amini, S., Golzarian, M. R., Mahmoodi, E., Jeromin, A., & Abbaspour-Fard, M. H. (2021). Numerical simulation of the mexico wind turbine using the actuator disk model along with the 3d correction of aerodynamic coefficients in openfoam.
Renewable Energy, 163, 2029–2036.
https://doi.org/10.1016/j.renene.2020.10.120
Bouhelal, A., Ladjal, A., & Smaili, A. (2023a).
Blade element momentum theory coupled with machine learning to predict wind turbine aerodynamic performances. AIAA SCITECH 2023 Forum.
https://doi.org/10.2514/6.2023-1153
Bouhelal, A., Smaili, A., Masson, C., & Guerri, O. (2017). Comparison of BEM and full Navier-Stokes CFD methods for prediction of aerodynamics performance of HAWT rotors.
In 2017 International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-6). IEEE.
https://doi.org/10.1109/icweaa.2018.8605050
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (2018a). Numerical investigation of turbulent flow around a recent horizontal axis wind turbine using low and high Reynolds models.
Journal of Applied Fluid Mechanics 11(1), 151–164.
https://doi.org/10.29252/JAFM.11.01.28074
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (2023b). Numerical investigations on the fluid behavior in the near wake of an experimental wind turbine model in the presence of the nacelle.
Journal of Applied Fluid Mechanics 16(1), 21–33.
https://doi.org/10.47176/jafm.16.01.1382
Bouhelal, A., Guerri, O., Smaili, A., & Masson, C. (2018b).
Contribution to the aerodynamic study of the air-sand flow around a wind turbine blade installed in desert environment of algeria. 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), IEEE.
https://doi.org/10.1109/ICWEAA.2018.8605050
Breton, S. P., Coton, F. N., & Moe, G. (2008). A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and nrel phase vi experiment data.
Wind Energy, 11(5), 459–482.
https://doi.org/10.1002/we.269
Chaviaropoulos, P. K., & Hansen, M. O. L. (2000). Investigating three-dimensional and rotational effects on wind turbine blades by means of a Quasi-3D navier-stokes solver.
Journal of Fluids Engineering, 122(2), 330–336.
https://doi.org/10.1115/1.483261
Choi, N. J., Hyun Nam, S., Hyun Jeong, J., & Chun Kim, K. (2013). Numerical study on the horizontal axis turbines arrangement in a wind farm: Effect of separation distance on the turbine aerodynamic power output.
Journal of Wind Engineering and Industrial Aerodynamics, 117, 11–17.
https://doi.org/10.1016/j.jweia.2013.04.005
Du, Z., & Selig, M. (1998).
A 3-d stall-delay model for horizontal axis wind turbine performance prediction. 1998 ASME Wind Energy Symposium.
https://doi.org/10.2514/6.1998-21
Dumitrescu, H., & Cardos, V. (2009). Inboard boundary layer state on wind turbine blades.
ZAMM-Journal of Applied Mathematics and Mechanics: Applied Mathematics and Mechanics, 89(3), 163–173.
https://doi.org/10.1002/zamm.200800105
Guntur, S., & Sørensen, N. (2013). A detailed study of the rotational augmentation and dynamic stall phenomena for wind turbines [PhD thesis, Technical Univ. of Denmark], Lyngby, Denmark.
Hamlaoui, M. N., Smaili, A., & Fellouah, H. (2018).
Improved bem method for hawt performance predictions. 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), IEEE.
https://doi.org/10.1109/icweaa.2018.8605096
Hamlaoui, M. N., Smaili, A., & Fellouah, H. (2021b).
New stall delay approach for hawt performance predictions using a cfd hybrid method. AIAA Scitech Forum.
https://doi.org/10.2514/6.2021-0951
Hamlaoui, M., Smaili, A., & Fellouah, H. (2021a). Improved stall delay model for hawt performance predictions using 3d navier-stokes solver and actuator disk method.
Journal of Applied Fluid Mechanics 15(1), 37–50.
https://doi.org/10.47176/jafm.15.01.32651
Hamlaoui, M., Smaili, A., Dobrev, I., Pereira, M., Fellouah, H., & Khelladi, S. (2022). Numerical and experimental investigations of hawt near wake predictions using particle image velocimetry and actuator disk method.
Energy, 238, 121660.
https://doi.org/10.1016/j.energy.2021.121660
Lindenburg, C. (2004). Modelling of rotational augmentation based on engineering considerations and measurements. European Wind Energy Conference, London. pp. 22–25.
Masson, C., Smaili, A., & Leclerc, C. (2001). Aerodynamic analysis of hawts operating in unsteady conditions.
Wind Energy, 4(1), 1– 22.
https://doi.org/10.1002/we.43
Narramore, J., & Vermeland, R. (1992). Navierstokes calculations of inboard stall delay due to rotation.
Journal of Aircraft, 29(1), 73–78.
https://doi.org/10.2514/3.46127
Ramesh Kumar, K., & Selvaraj, M. (2023). Investigations on integrated funnel, fan and diffuser augmented unique wind turbine to enhance the wind speed.
Journal of Applied Fluid Mechanics, 16(3), 575-589.
https://doi.org/10.47176/jafm.16.03.1498
Rehman, S., Alam, M., Alhems, L. M., Rafique, M. M., et al. (2018). Horizontal axis wind turbine blade design methodologies for efficiency enhancement—a review.
Energies, 11(3), 506.
https://doi.org/10.3390/en11030506
Schepers, J., Boorsma, K., & Munduate, X. (2014).
Final results from mexnext-i: Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large german dutch wind tunnel dnw. Journal of Physics: Conference Series. IOP Publishing.
https://doi.org/10.1088/1742-6596/555/1/012089
Shen, W. Z., Mikkelsen, R., Sørensen, J. N., & Bak, C. (2005). Tip loss corrections for wind turbine computations.
Wind Energy, 8(4), 457–475.
https://doi.org/10.1002/we.153
Snel, H. (2003). Review of aerodynamics for wind turbines.
Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 6(3), 203–211.
https://doi.org/10.1002/we.97
Snel, H., Houwink, R., Bosschers, J., et al. (1994). Sectional prediction of lift coefficients on rotating wind turbine blades in stall. Netherlands Energy Research Foundation Petten, Netherlands.
Sørensen, J. N., & Myken, A. (1992). Unsteady actuator disc model for horizontal axis wind turbines.
Journal of Wind Engineering and Industrial Aerodynamics, 39(1-3), 139–149.
https://doi.org/10.1016/0167-6105(92)90540-Q
Stevens, R. J., Mart´ınez-Tossas, L. A., & Meneveau, C. (2018). Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments.
Renewable Energy, 116, 470 – 478.
https://doi.org/10.1016/j.renene.2017.08.072
Sturge, D., Sobotta, D., Howell, R., While, A., & Lou, J. (2015). A hybrid actuator disc – full rotor cfd methodology for modelling the effects of wind turbine wake interactions on performance.
Renewable Energy, 80, 525– 537.
https://doi.org/10.1016/j.renene.2015.02.053
Tian, L., Song, Y., Zhao, N., Shen, W., Zhu, C., & Wang, T. (2020). Effects of turbulence modelling in ad/rans simulations of single wind tidal turbine wakes and double wake interactions.
Energy, 208, 118440.
https://doi.org/10.1016/j.energy.2020.118440
Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. i. basic theory.
Journal of Scientific Computing, 1(1), 3–51.
https://doi.org/10.1007/bf01061452