Burroughs, C. B., Fischer, R. W., & Kern, F. R. (1997). An introduction to statistical energy analysis. The Journal of the Acoustical Society of America, 101(4), 1779-1789. https://doi.org/10.1121/1.418074
Cao, Y., Bai, Y., & Wang, Q. (2018). Complexity simulation on application of asymmetric bionic cross-section rod in pantographs of high-speed trains.
Complexity, 2018.
https://doi.org/10.1155/2018/3087312.
Chen, Z., Ge, J., Lin, J., Sun, Z., & Guo, J. (2012). Noise and vibration induced by a pantograph of high-speed trains.
The Journal of the Acoustical Society of America, 131(4), 3264-3264.
https://doi.org/10.1121/1.4708193
Guo, L., Xiao, D. M., & Jian, Y. (2023). Study on noise reduction of high-speed train pantograph by using jet device based on numerical simulation and wind tunnel test.
Journal of the China Railway Society, 45(1), 20-27.
https://doi.org/10.3969/j.issn.1001-8360.2023.01.003
Guo, J. Q., Ge, J. M., Sun, Z. J., Liu, S. Q., Zhao, Y. J., & Lin, J. S. (2017). Pantograph area noise and vibration transmission characteristics and interior noise reduction method of high-speed trains. In Noise and Vibration Mitigation for Rail Transportation Systems: Proceedings of the 11th International Workshop on Railway Noise, Uddevalla, Sweden, 9–13 September 2013 (pp. 563-570). Springer Berlin Heidelberg,
https://doi.org/10.1007/978-3-662-44832-8_66
Kolmogorov, A N. (1991). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434(1890), 9-13.
https://doi.org/10.1098/rspa.1991.0075.
Lee, S., Lee, S., & Cheong, C. (2022). Development of high-fidelity numerical methodology for prediction of vehicle interior noise due to external flow disturbances using LES and vibroacoustic techniques.
Applied Sciences, 12(13), 6345.
https://doi.org/10.3390/app12136345
Li, H., Liu, X., Thompson, D., & Squicciarini, G. (2022). The distribution of pantograph aerodynamic noise on train external surfaces and the influence of flow.
Applied Acoustics, 188, 108542.
https://doi.org/10.1016/j.apacoust.2021.108542
Li, Y., Xiao, X., Zhang, Y., Tang, Z., & Pan, A. (2023). Acoustic optimization design of porous materials on sandwich panel under flow-induced vibration.
International Journal of Aeroacoustics, 22(1-2), 60-84.
https://doi.org/10.1177/1475472X221150180
Thompson, D. J., Iglesias, E. L., Liu, X., Zhu, J., & Hu, Z. (2015). Recent developments in the prediction and control of aerodynamic noise from high-speed trains.
International Journal of Rail Transportation, 3(3), 119-150.
https://doi.org/10.1080/23248378.2015.1052996
Wang, X., Wang, T., Su, L., Wang, Y., Yang, D., Yang, C., & Liu, N. (2020). Adaptive active vehicle interior noise control algorithm based on nonlinear signal reconstruction.
Circuits, Systems, and Signal Processing, 39, 5226-5246.
https://doi.org/10.1007/s00034-020-01410-0
Yao, Y., Sun, Z., Li, G., Prapamonthon, P., Cheng, G., & Yang, G. (2022). Numerical investigation on aerodynamic drag and noise of pantographs with modified structures.
Journal of Applied Fluid Mechanics, 15(2), 617-631.
https://doi.org/10.47176/jafm.15.02.32849
Zhang, J., Xiao, X., Sheng, X., Zhang, C., Wang, R., Jin, X. (2016). SEA and contribution analysis for interior noise of a high speed train.
Applied Acoustics, 112, 158-170.
https://doi.org/10.1016/j.apacoust.2016.05.019.
Zhang, J., Yao, D., Peng, W., Wang, R., Li, J., & Guo, S. (2022). Optimal design of lightweight acoustic metamaterials for low-frequency noise and vibration control of high-speed train composite floor.
Applied Acoustics, 199, 109041.
https://doi.org/10.1016/j.apacoust.2022.109041
Zhang, J., Xiao, X., Sheng, X., & Li, Z. (2019). Sound source localisation for a high-speed train and its transfer path to interior noise.
Chinese Journal of Mechanical Engineering, 32(1), 1-16.
https://doi.org/10.1186/s10033-019-0375-1
Zhu, J, Zhang, Q., Xu, F., Liu, L., & Sheng X. (2021). Review on aerodynamic noise of high-speed trains.
Journal of Traffic and Transportation Engineering in Chinese, 21(3), 18.
https://doi.org/10.19818/j.cnki.1671-1637.2021.03.003