Abdollahzadeh, M., Pascoa, J. C., & Oliveira, P. J. (2018). Comparison of DBD plasma actuators flow control authority in different modes of actuation.
Aerospace Science and Technology, 78, 183–196.
https://doi.org/10.1016/j.ast.2018.04.013
Ansys® Fluent, Release 2020 R2
Ansys® ICEM CFD, Release 2020 R2
Bayindirli, C. (2019). Drag reduction of a bus model by passive flow canal.
International Journal of Energy Applications and Technologies, 6(1), 24–30.
https://doi.org/10.31593/ijeat.533745
Bayindirli, C. (2023). Numerical and experimental enhancement of the aerodynamic performance of a road vehicle using passive flow control
. Journal of Applied Fluid Mechanics, 16, 1414-1426.
https://doi.org/10.47176/jafm.16.07.1760.
Bayindirli, C., & Celik, M. (2023). Experimental optimization of aerodynamic drag coefficient of a minibus model with non-smooth surface plate application.
Journal of Engineering Studies and Research, 28(4), 34–40.
https://doi.org/10.29081/jesr.v28i4.004
Belinger, A., Hardy, P., Barricau, P., Cambronne, J. P., & Caruana, D. (2011). Influence of the energy dissipation rate in the discharge of a Plasma Synthetic Jet Actuator.
Journal of Physics D: Applied Physics, 44(36), 365201.
https://doi.org/10.1088/0022-3727/44/36/365201
Cheng, L., Sun, S., Tan, H. J., Zhang, Y. C. & He, X. M. (2017). Experimental study on characteristics of plasma synthetic actuator with normal slot.
Journal of Propulsion Technology, (38), 1937-1942. (in Chinese).
https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2017.09.003
Cybyk, B., Grossman, K., & Wilkerson, J. (2004).
Performance characteristics of the SparkJet flow control actuator. 2nd AIAA Flow Control Conference.
https://doi.org/10.2514/6.2004-2131
Cybyk, B., Grossman, K., Wilkerson, J., Chen, J., & Katz, J. (2005).
Single-pulse performance of the sparkjet flow control actuator. 43rd AIAA Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.2005-401
Cybyk, B., Land, H., Simon, D., Chen, J., & Katz, J. (2006).
Experimental characterization of a supersonic flow control actuator. 44th AIAA Aerospace Sciences Meeting and Exhibit.
https://doi.org/10.2514/6.2006-478
Ebrahimi, A., & Hajipour, M. (2018). Flow separation control over an airfoil using dual excitation of DBD plasma actuators.
Aerospace Science and Technology, 79, 658–668.
https://doi.org/10.1016/j.ast.2018.06.019
Ebrahimi, A., Hajipour, M., & Ghamkhar, K. (2018). Experimental study of stall control over an airfoil with dual excitation of separated shear layers.
Aerospace Science and Technology, 82–83, 402–411.
https://doi.org/10.1016/j.ast.2018.09.027
Emerick, T., Ali, M. Y., Foster, C., Alvi, F. S., & Popkin, S. (2014). SparkJet characterizations in quiescent and supersonic flowfields.
Experiments in Fluids, 55(12).
https://doi.org/10.1007/s00348-014-1858-6
Falempin, F., Фирсов, А. А., Yarantsev, D., Goldfeld, M. A., Timofeev, K., & Leonov, S. B. (2015). Plasma control of shock wave configuration in off-design mode of M = 2 inlet.
Experiments in Fluids, 56(3),
https://doi.org/10.1007/s00348-015-1928-4
Haack, S., Taylor, T., Cybyk, B., Foster, C., & Alvi, F. (2011).
Experimental estimation of SparkJet efficiency. 42nd AIAA Plasmadynamics and Lasers Conference.
https://doi.org/10.2514/6.2011-3997
Kim, H. J., Shin, J. Y., Ahn, S., & Kim, K. H. (2019).
Numerical analysis on flow characteristics and jet boundary condition of Sparkjet actuator. AIAA Scitech 2019 Forum.
https://doi.org/10.2514/6.2019-0736
Lapushkina, T. A., Erofeev, A. V., Azarova, O. A., & Kravchenko, O. V. (2019). Interaction of a plane shock wave with an area of ionization instability of discharge plasma in air.
Aerospace Science and Technology, 85, 347–358.
https://doi.org/10.1016/j.ast.2018.12.020
Liu, F., Yan, H., Zhan, W., & Xue, Y. (2019). Effects of steady and pulsed discharge arcs on shock wave control in mach 2.5 flow.
Aerospace Science and Technology, 93, 105330.
https://doi.org/10.1016/j.ast.2019.105330
Luo, Y., Li, J., Liang, H., Guo, S., Tang, M., & Wang, H. (2021). Suppressing unsteady motion of shock wave by high-frequency plasma synthetic jet.
Chinese Journal of Aeronautics, 34(9), 60–71.
https://doi.org/10.1016/j.cja.2021.04.011
Meng, X., Hu, H., Yan, X., Liu, F., & Luo, S. (2018). Lift improvements using duty-cycled plasma actuation at low Reynolds numbers.
Aerospace Science and Technology, 72, 123–133.
https://doi.org/10.1016/j.ast.2017.10.038
Miao, H., Zhang, Z., Wu, Y., He, Y., & li, Y. (2021). A self-trigger three-electrode plasma synthetic jet actuator.
Sensors and Actuators A: Physical, 332, 113174.
https://doi.org/10.1016/j.sna.2021.113174
Narayanaswamy, V., Raja, L. L., & Clemens, N. T. (2010). Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control.
AIAA Journal, 48(2), 297–305.
https://doi.org/10.2514/1.41352
Shaygani, A., & Adamiak, K. (2023). Mean model of the dielectric barrier discharge plasma actuator including photoionization.
Journal of Physics D: Applied Physics, 56(5), 055203.
https://doi.org/10.1088/1361-6463/acaa43
Wang, L., Luo, Z. B., Xia, Z. X., & Liu, B. (2013). Energy efficiency and performance characteristics of plasma synthetic jet.
Acta Physica Sinica, 62(12), 125207.
https://doi.org/10.7498/aps.62.125207
Zhang, W., Geng, X., Shi, Z., & Jin, S. (2020). Study on inner characteristics of plasma synthetic jet actuator and geometric effects.
Aerospace Science and Technology, 105, 106044.
https://doi.org/10.1016/j.ast.2020.106044
Zhang, W., Shi, Z., Li, Z., Geng, X., Zhang, C., & Sun, Q. (2022a). Study on propagation mechanisms of the actuations generated by plasma synthetic jet actuator in a supersonic flow.
Aerospace Science and Technology, 126, 107644.
https://doi.org/10.1016/j.ast.2022.107644
Zhang, W., Shi, Z., Zhang, C., Geng, X., Li, K., & Chen, Z. (2022b). A study on flow control in a hypersonic inlet using a plasma synthetic jet actuator.
Physics of Fluids, 34(10).
https://doi.org/10.1063/5.0114073
Zhang, X., Zhao, Y., & Yang, C. (2023). Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage power.
Chinese Journal of Aeronautics, 36(1), 1–21.
https://doi.org/10.1016/j.cja.2022.01.026
Zheng, B., Zhang, Q., Zhao, T., Song, G., & Chen, Q. (2023). Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator.
Plasma Science & Technology, 25(2), 025503.
https://doi.org/10.1088/2058-6272/ac8cd4
Zong, H., & Kotsonis, M. (2019). Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow.
Journal of Fluid Mechanics, 865, 928–962.
https://doi.org/10.1017/jfm.2019.93
Zong, H., Chiatto, M., Kotsonis, M., & de Luca, L. (2018). Plasma synthetic jet actuators for active flow control.
Actuators, 7(4), 77.
https://doi.org/10.3390/act7040077