Three-dimensional Flow Field Characteristics of a Normal Slot Plasma Synthetic Jet Actuator

Document Type : Regular Article

Authors

1 College of Aeronautical Engineering, Civil Aviation Flight University of China, Guanghan, 618307, China

2 College of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307,

Abstract

In this work, to comprehensively analyze the flow field characteristics of a normal slot plasma synthetic jet actuator, three-dimensional simulation models are established for both normal slot and normal orifice actuators. A detailed comparative analysis of the three-dimensional flow field characteristics of these two actuators is performed. The results indicate that the motion shockwaves and jets generated by the normal slot actuator cover a larger and more uniform region, showing planar characteristics and excellent flow control uniformity. The total pressure ratio for the normal slot actuator is 3.59, significantly higher than the value of 3.50 for the normal orifice actuator, indicating lower pressure loss in the former. Additionally, the normal slot has a larger average exit Mach number (Ma), indicating a stronger flow control capability. It also achieves the peak Ma in a shorter time, indicating a faster momentum output response. Therefore, compared with the normal orifice actuator, the normal slot actuator has better potential for flow control.

Keywords

Main Subjects


Abdollahzadeh, M., Pascoa, J. C., & Oliveira, P. J. (2018). Comparison of DBD plasma actuators flow control authority in different modes of actuation. Aerospace Science and Technology, 78, 183–196. https://doi.org/10.1016/j.ast.2018.04.013
Ansys® Fluent, Release 2020 R2
Ansys® ICEM CFD, Release 2020 R2
Bayindirli, C. (2019). Drag reduction of a bus model by passive flow canal. International Journal of Energy Applications and Technologies, 6(1), 24–30. https://doi.org/10.31593/ijeat.533745
Bayindirli, C. (2023). Numerical and experimental enhancement of the aerodynamic performance of a road vehicle using passive flow control. Journal of Applied Fluid Mechanics, 16, 1414-1426. https://doi.org/10.47176/jafm.16.07.1760.
Bayindirli, C., & Celik, M. (2023). Experimental optimization of aerodynamic drag coefficient of a minibus model with non-smooth surface plate application. Journal of Engineering Studies and Research, 28(4), 34–40. https://doi.org/10.29081/jesr.v28i4.004
Belinger, A., Hardy, P., Barricau, P., Cambronne, J. P., & Caruana, D. (2011). Influence of the energy dissipation rate in the discharge of a Plasma Synthetic Jet Actuator. Journal of Physics D: Applied Physics, 44(36), 365201. https://doi.org/10.1088/0022-3727/44/36/365201
Cattafesta, L. N. (2017). Active flow control-introduction. VKI Lecture Series. https://doi.org/10.35294/ls201704.cattafesta1
Cheng, L., Sun, S., Tan, H. J., Zhang, Y. C. & He, X. M. (2017). Experimental study on characteristics of plasma synthetic actuator with normal slot. Journal of Propulsion Technology, (38), 1937-1942. (in Chinese). https://link.cnki.net/doi/10.13675/j.cnki.tjjs.2017.09.003
Cybyk, B., Grossman, K., & Wilkerson, J. (2004). Performance characteristics of the SparkJet flow control actuator. 2nd AIAA Flow Control Conference. https://doi.org/10.2514/6.2004-2131
Cybyk, B., Grossman, K., Wilkerson, J., Chen, J., & Katz, J. (2005). Single-pulse performance of the sparkjet flow control actuator. 43rd AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2005-401
Cybyk, B., Land, H., Simon, D., Chen, J., & Katz, J. (2006). Experimental characterization of a supersonic flow control actuator. 44th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2006-478
Ebrahimi, A., & Hajipour, M. (2018). Flow separation control over an airfoil using dual excitation of DBD plasma actuators. Aerospace Science and Technology, 79, 658–668. https://doi.org/10.1016/j.ast.2018.06.019
Ebrahimi, A., Hajipour, M., & Ghamkhar, K. (2018). Experimental study of stall control over an airfoil with dual excitation of separated shear layers. Aerospace Science and Technology, 82–83, 402–411. https://doi.org/10.1016/j.ast.2018.09.027
Emerick, T., Ali, M. Y., Foster, C., Alvi, F. S., & Popkin, S. (2014). SparkJet characterizations in quiescent and supersonic flowfields. Experiments in Fluids, 55(12). https://doi.org/10.1007/s00348-014-1858-6
Falempin, F., Фирсов, А. А., Yarantsev, D., Goldfeld, M. A., Timofeev, K., & Leonov, S. B. (2015). Plasma control of shock wave configuration in off-design mode of M = 2 inlet. Experiments in Fluids, 56(3), https://doi.org/10.1007/s00348-015-1928-4
Grossman, K., Bohdan, C., & VanWie, D. (2003). Sparkjet actuators for flow control. 41st Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2003-57
Haack, S., Taylor, T., Cybyk, B., Foster, C., & Alvi, F. (2011). Experimental estimation of SparkJet efficiency. 42nd AIAA Plasmadynamics and Lasers Conference. https://doi.org/10.2514/6.2011-3997
Haack, S., Taylor, T., Emhoff, J., & Cybyk, B. (2010). Development of an analytical SparkJet model. 5th Flow Control Conference. https://doi.org/10.2514/6.2010-4979
Kim, H. J., Shin, J. Y., Ahn, S., & Kim, K. H. (2019). Numerical analysis on flow characteristics and jet boundary condition of Sparkjet actuator. AIAA Scitech 2019 Forum. https://doi.org/10.2514/6.2019-0736
Lapushkina, T. A., Erofeev, A. V., Azarova, O. A., & Kravchenko, O. V. (2019). Interaction of a plane shock wave with an area of ionization instability of discharge plasma in air. Aerospace Science and Technology, 85, 347–358. https://doi.org/10.1016/j.ast.2018.12.020
Liu, F., Yan, H., Zhan, W., & Xue, Y. (2019). Effects of steady and pulsed discharge arcs on shock wave control in mach 2.5 flow. Aerospace Science and Technology, 93, 105330. https://doi.org/10.1016/j.ast.2019.105330
Luo, Y., Li, J., Liang, H., Guo, S., Tang, M., & Wang, H. (2021). Suppressing unsteady motion of shock wave by high-frequency plasma synthetic jet. Chinese Journal of Aeronautics, 34(9), 60–71. https://doi.org/10.1016/j.cja.2021.04.011
Meng, X., Hu, H., Yan, X., Liu, F., & Luo, S. (2018). Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerospace Science and Technology, 72, 123–133. https://doi.org/10.1016/j.ast.2017.10.038
Miao, H., Zhang, Z., Wu, Y., He, Y., & li, Y. (2021). A self-trigger three-electrode plasma synthetic jet actuator. Sensors and Actuators A: Physical, 332, 113174. https://doi.org/10.1016/j.sna.2021.113174
Narayanaswamy, V., Raja, L. L., & Clemens, N. T. (2010). Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA Journal, 48(2), 297–305. https://doi.org/10.2514/1.41352
Shaygani, A., & Adamiak, K. (2023). Mean model of the dielectric barrier discharge plasma actuator including photoionization. Journal of Physics D: Applied Physics, 56(5), 055203. https://doi.org/10.1088/1361-6463/acaa43
Wang, L., Luo, Z. B., Xia, Z. X., & Liu, B. (2013). Energy efficiency and performance characteristics of plasma synthetic jet. Acta Physica Sinica, 62(12), 125207. https://doi.org/10.7498/aps.62.125207
Zhang, W., Geng, X., Shi, Z., & Jin, S. (2020). Study on inner characteristics of plasma synthetic jet actuator and geometric effects. Aerospace Science and Technology, 105, 106044. https://doi.org/10.1016/j.ast.2020.106044
Zhang, W., Shi, Z., Li, Z., Geng, X., Zhang, C., & Sun, Q. (2022a). Study on propagation mechanisms of the actuations generated by plasma synthetic jet actuator in a supersonic flow. Aerospace Science and Technology, 126, 107644. https://doi.org/10.1016/j.ast.2022.107644
Zhang, W., Shi, Z., Zhang, C., Geng, X., Li, K., & Chen, Z. (2022b). A study on flow control in a hypersonic inlet using a plasma synthetic jet actuator. Physics of Fluids, 34(10). https://doi.org/10.1063/5.0114073
Zhang, X., Zhao, Y., & Yang, C. (2023). Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage power. Chinese Journal of Aeronautics, 36(1), 1–21. https://doi.org/10.1016/j.cja.2022.01.026
Zheng, B., Zhang, Q., Zhao, T., Song, G., & Chen, Q. (2023). Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator. Plasma Science & Technology, 25(2), 025503. https://doi.org/10.1088/2058-6272/ac8cd4
Zong, H., & Kotsonis, M. (2019). Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow. Journal of Fluid Mechanics, 865, 928–962. https://doi.org/10.1017/jfm.2019.93
Zong, H., Chiatto, M., Kotsonis, M., & de Luca, L. (2018). Plasma synthetic jet actuators for active flow control. Actuators, 7(4), 77. https://doi.org/10.3390/act7040077