Bhave, N. A., Gupta, M. M., & Joshi, S. S. (2022). Effect of oxy hydrogen gas addition on combustion, performance, and emissions of premixed charge compression ignition engine.
Fuel Processing Technology,
227(November 2021), 107098.
https://doi.org/10.1016/j.fuproc.2021.107098.
Cheng, X., Ng, H. K., Gan, S., Ho, J. H., & Pang, K. M. (2015). Development and validation of a generic reduced chemical kinetic mechanism for CFD spray combustion modelling of biodiesel fuels.
Combustion and Flame,
162(6), 2354–2370.
https://doi.org/10.1016/j.combustflame.2015.02.003
Dal Forno Chuahy, F., Strickland, T., Walker, N. R., & Kokjohn, S. L. (2021). Effects of reformed fuel on dual-fuel combustion particulate morphology.
International Journal of Engine Research,
22(3), 777–790.
https://doi.org/10.1177/1468087419879782
Duan, X., Lai, M. C., Jansons, M., Guo, G., & Liu, J. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine.
Fuel,
285(August 2020), 119142.
https://doi.org/10.1016/j.fuel.2020.119142
Fakhari, A. H., Gharehghani, A., Salahi, M. M., & Mahmoudzadeh Andwari, A. (2024). RCCI combustion of ammonia in dual fuel engine with early injection of diesel fuel.
Fuel,
365, 131–182.
https://doi.org/10.1016/j.fuel.2024.131182
Fakhari, A. H., Gharehghani, A., Salahi, M. M., & Mahmoudzadeh Andwari, A., Mahmoudzadeh Andwari, A. et al. (2023). Numerical Investigation of Ammonia-Diesel Fuelled Engine Operated in RCCI Mode.
SAE Technical Paper.
https://doi.org/10.4271/2023-24-0057.
Gharehghani, A., Abbasi, H. R., & Alizadeh, P. (2021). Application of machine learning tools for constrained multi-objective optimization of an HCCI engine.
Energy,
233, 121106.
https://doi.org/10.1016/j.energy.2021.121106
Gharehghani, A., Hosseini, R., Mirsalim, M., & Jazayeri, S. A. (2015). An experimental study on reactivity controlled compression ignition engine fueled with biodiesel / natural gas.
Energy, 1–10.
https://doi.org/10.1016/j.energy.2015.06.014
Harari, P. A., Banapurmath, N. R., Yaliwal, V. S., Khan, T. M. Y., Soudagar, M. E. M., & Sajjan, A. M. (2020). Experimental studies on performance and emission characteristics of reactivity controlled compression ignition (RCCI) engine operated with gasoline and Thevetia Peruviana biodiesel.
Renewable Energy,
160, 865–875.
https://doi.org/10.1016/j.renene.2020.07.009
Hosseini, S. H., Tsolakis, A., Alagumalai, A., Mahian, O., Lam, S. S., Pan, J., Peng, W., Tabatabaei, M., & Aghbashlo, M. (2023). Use of hydrogen in dual-fuel diesel engines.
Progress in Energy and Combustion Science,
98, 101100.
https://doi.org/10.1016/j.pecs.2023.101100
Huang, H., Zhu, Z., Chen, Y., Chen, Y., Lv, D., Zhu, J., & Ouyang, T. (2019). Experimental and numerical study of multiple injection effects on combustion and emission characteristics of natural gas–diesel dual-fuel engine.
Energy Conversion and Management,
183, 84–96.
https://doi.org/10.1016/j.enconman.2018.12.110
Işik, M. Z., & Aydin, H. (2019). Investigation on the effects of gasoline reactivity controlled compression ignition application in a diesel generator in high loads using safflower biodiesel blends.
Renewable Energy,
133, 177–189.
https://doi.org/10.1016/j.renene.2018.10.025
Jain, A., Jyoti Bora, B., Kumar, R., Sharma, P., Jyoti Medhi, B., Venkata Rambabu, G., & Deepanraj, B. (2023). Energy, exergy and emission [3E] analysis of Mesua Ferrea seed oil biodiesel fueled diesel engine at variable injection timings.
Fuel,
353, 129115.
https://doi.org/10.1016/j.fuel.2023.129115
Kalsi, S. S., & Subramanian, K. A. (2017). Experimental investigations of effects of hydrogen blended CNG on performance, combustion and emissions characteristics of a biodiesel fueled reactivity controlled compression ignition engine (RCCI).
International Journal of Hydrogen Energy,
42(7), 4548–4560.
https://doi.org/10.1016/j.ijhydene.2016.12.147
Karami, S., & Gharehghani, A. (2021). Effect of nano-particles concentrations on the energy and exergy efficiency improvement of indirect-injection diesel engine.
Energy Reports,
7, 3273–3285.
https://doi.org/10.1016/j.egyr.2021.05.050
Korkmaz, M., Ritter, D., Jochim, B., Beeckmann, J., Abel, D., & Pitsch, H. (2019). Effects of injection strategy on performance and emissions metrics in a diesel/methane dual-fuel single-cylinder compression ignition engine.
International Journal of Engine Research,
20(10), 1059–1072.
https://doi.org/10.1177/1468087419836586
Kumar, M., Bhowmik, S., & Paul, A. (2022). Effect of pilot fuel injection pressure and injection timing on combustion, performance and emission of hydrogen-biodiesel dual fuel engine.
International Journal of Hydrogen Energy,
47(68), 29554–29567.
https://doi.org/10.1016/j.ijhydene.2022.06.260
Lee, S., Kim, C., Lee, S., Lee, J., & Kim, J. (2020). Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine.
Fuel,
262, 116607.
https://doi.org/10.1016/j.fuel.2019.116607
Liu, J., Zhang, X., Liu, Y., Sun, P., Ji, Q., Wang, X., Li, Z., & Ma, H. (2023). Experimental study on in-cylinder combustion and exhaust emissions characteristics of natural gas/diesel dual-fuel engine with single injection and split injection strategies.
Process Safety and Environmental Protection,
172, 225–240.
https://doi.org/10.1016/j.psep.2023.02.013
Mahla, S. K., Dhir, A., Gill, K. J. S., Cho, H. M., Lim, H. C., & Chauhan, B. S. (2018). Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine.
Energy,
152(x), 303–312.
https://doi.org/10.1016/j.energy.2018.03.072
Mattarelli, E., Alberto Rinaldini, C., Caprioli, S., & Scrignoli, F. (2022). Influence of H2 enrichment for improving low load combustion stability of a Dual Fuel lightduty Diesel engine.
International Journal of Engine Research,
23(5), 721–737.
https://doi.org/10.1177/14680874211051600
Mikulski, M., Balakrishnan, P. R., & Hunicz, J. (2019). Natural gas-diesel reactivity controlled compression ignition with negative valve overlap and in-cylinder fuel reforming.
Applied Energy,
254, 113638.
https://doi.org/10.1016/j.apenergy.2019.113638
Mohan, B., Tay, K. L., Yang, W., & Chua, K. J. (2015). Development of a skeletal multi-component fuel reaction mechanism based on decoupling methodology.
Energy Conversion and Management,
105, 1223–1238.
https://doi.org/10.1016/j.enconman.2015.08.060
Park, H., Shim, E., Lee, J., Oh, S., Kim, C., Lee, Y., & Kang, K. (2022). Large–squish piston geometry and early pilot injection for high efficiency and low methane emission in natural gas–diesel dual fuel engine at high–load operations.
Fuel,
308, 122015.
https://doi.org/10.1016/j.fuel.2021.122015
Park, H., Shim, E., Lee, J., Oh, S., Kim, C., Lee, Y., & Kang, K. (2023). Comparative evaluation of conventional dual fuel, early pilot, and reactivity-controlled compression ignition modes in a natural gas-diesel dual-fuel engine.
Energy,
268, 126769.
https://doi.org/10.1016/j.energy.2023.126769
Paykani, A., Chehrmonavari, H., Tsolakis, A., Alger, T., Northrop, W. F., & Reitz, R. D. (2022). Synthesis gas as a fuel for internal combustion engines in transportation.
Progress in Energy and Combustion Science,
90, 100995.
https://doi.org/10.1016/j.pecs.2022.100995
Paykani, A., Garcia, A., Shahbakhti, M., Rahnama, P., & Reitz, R. D. (2021). Reactivity controlled compression ignition engine: Pathways towards commercial viability.
Applied Energy,
282(PA), 116174.
https://doi.org/10.1016/j.apenergy.2020.116174
Pedrozo, V. B., Wang, X., Guan, W., & Zhao, H. (2022). The effects of natural gas composition on conventional dual-fuel and reactivity-controlled compression ignition combustion in a heavy-duty diesel engine.
International Journal of Engine Research,
23(3), 397–415.
https://doi.org/10.1177/1468087420984044
Poorghasemi, K., Saray, R. K., Ansari, E., Irdmousa, B. K., Shahbakhti, M., & Naber, J. D. (2017). Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine.
Applied Energy,
199, 430–446.
https://doi.org/10.1016/j.apenergy.2017.05.011
Rajpoot, A. S., Choudhary, T., Chelladurai, H., Nath Verma, T., & Pugazhendhi, A. (2023). Sustainability analysis of spirulina biodiesel and their bends on a diesel engine with energy, exergy and emission (3E’s) parameters.
Fuel,
349, 128637.
https://doi.org/10.1016/j.fuel.2023.128637
Reitz, R. D., & Duraisamy, G. (2015a). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines.
Progress in Energy and Combustion Science,
46, 12–71.
https://doi.org/10.1016/j.pecs.2014.05.003
Reitz, R. D., & Duraisamy, G. (2015b). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines.
Progress in Energy and Combustion Science,
46, 12–71.
https://doi.org/10.1016/j.pecs.2014.05.003
Sanjeevannavar, M. B., Banapurmath, N. R., Soudagar, M. E. M., Atgur, V., Hossain, N., Mujtaba, M. A., Khan, T. M. Y., Rao, B. N., Ismail, K. A., & Elfasakhany, A. (2022). Performance indicators for the optimal BTE of biodiesels with additives through engine testing by the Taguchi approach.
Chemosphere,
288(P2), 132450.
https://doi.org/10.1016/j.chemosphere.2021.132450
Shu, J., Fu, J., Liu, J., Ma, Y., Wang, S., Deng, B., & Zeng, D. (2019). Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model.
Applied Energy,
233–234, 182–195.
https://doi.org/10.1016/j.apenergy.2018.10.040
Shu, J., Fu, J., Liu, J., Zhang, L., & Zhao, Z. (2018). Experimental and computational study on the effects of injection timing on thermodynamics, combustion and emission characteristics of a natural gas (NG)-diesel dual fuel engine at low speed and low load.
Energy Conversion and Management,
160, 426–438.
https://doi.org/10.1016/j.enconman.2018.01.047
Thangavel, V., Subramanian, B., & Ponnusamy, V. K. (2023). Investigations on the effect of H2 and HHO gas induction on brake thermal efficiency of dual-fuel CI engine.
Fuel,
337, 126888.
https://doi.org/10.1016/j.fuel.2022.126888
Thomas, J. J., Sabu, V. R., Nagarajan, G., Kumar, S., & Basrin, G. (2020). Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions.
Energy,
206, 118199.
https://doi.org/10.1016/j.energy.2020.118199
Vargas-Ibáñez, L. T., Díaz-Ovalle, C. O., Cano-Gómez, J. J., & Flores-Escamilla, G. A. (2023). Theoretical analysis of the spray characteristics of ternary blends of diesel, biodiesel, and long-chain alcohols inside a combustion chamber.
Fuel,
354.
https://doi.org/10.1016/j.fuel.2023.129305
Wei, Y., Zhang, Z., Li, X., Li, G., Zhou, M., & Belal, B. Y. (2023). The ignition characteristics of dual-fuel spray at different ambient methane concentrations under engine-like conditions.
Applied Thermal Engineering,
219(PB), 119634.
https://doi.org/10.1016/j.applthermaleng.2022.119634
Winangun, K., Setiyawan, A., & Sudarmanta, B. (2023). The combustion characteristics and performance of a Diesel Dual-Fuel (DDF) engine fueled by palm oil biodiesel and hydrogen gas.
Case Studies in Thermal Engineering,
42.
https://doi.org/10.1016/j.csite.2023.102755
Wu, Z., Rutland, C. J., & Han, Z. (2019). Numerical evaluation of the effect of methane number on natural gas and diesel dual-fuel combustion.
International Journal of Engine Research,
20(4), 405–423.
https://doi.org/10.1177/1468087418758114
Yin, X., Li, W., Duan, H., Duan, Q., Kou, H., Wang, Y., Yang, B., & Zeng, K. (2023). A comparative study on operating range and combustion characteristics of methanol/diesel dual direct injection engine with different methanol injection timings.
Fuel,
334(P1), 126646.
https://doi.org/10.1016/j.fuel.2022.126646
Yousefi, A., Guo, H., & Birouk, M. (2019a). Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions.
Fuel,
235, 838–846.
https://doi.org/10.1016/j.fuel.2018.08.064
Yousefi, A., Guo, H., Birouk, M., & Liko, B. (2019b). On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection.
Applied Energy,
242, 216–231.
https://doi.org/10.1016/j.apenergy.2019.03.093
Yu, H., Wang, W., Sheng, D., Li, H., & Duan, S. (2022). Performance of combustion process on marine low speed two-stroke dual fuel engine at different fuel conditions: Full diesel/diesel ignited natural gas.
Fuel,
310.
https://doi.org/10.1016/j.fuel.2021.122370
Yuvenda, D., Sudarmanta, B., Wahjudi, A., & Hirowati, R. A. (2022). Effect of Adding Combustion Air on Emission in a Diesel Dual-Fuel Engine with Crude Palm Oil Biodiesel Compressed Natural Gas Fuels.
International Journal of Renewable Energy Development,
11(3), 871–877.
https://doi.org/10.14710/ijred.2022.41275
Zarrinkolah, M. T., & Hosseini, V. (2022). Detailed Analysis of the Effects of Biodiesel Fraction Increase on the Combustion Stability and Characteristics of a Reactivity‐ Controlled Compression Ignition Diesel‐Biodiesel/Natural Gas Engine.
Energies,
15(3), 1–17.
https://doi.org/10.3390/en15031094
Zhang, Z., Lv, J., Li, W., Long, J., Wang, S., Tan, D., & Yin, Z. (2022). Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel.
Energy,
256.
https://doi.org/10.1016/j.energy.2022.124662