ANSYS (2018). Fluent User’s Guide. ANSYS Inc.
Arpino, F., Cortellessa, G., Grossi, G., & Nagano, H. (2021). A Eulerian-Lagrangian approach for the non-isothermal and transient CFD analysis of the aerosol airborne dispersion in a car cabin.
Building and Environment,
209, 108648.
https://doi.org/10.1016/j.buildenv.2021.108648
Assaad, D. A., Ghali, K. F., Ghaddar, N., & Habchi, C. (2020). Coupled CFD and particle resuspension models under combined effect of mechanical and aerodynamic disturbances.
Building and Environment,
169, 106567.
https://doi.org/10.1016/j.buildenv.2019.106567
Bandi, P., Paul Manelil, N., Maiya, M., Tiwari, S., Thangamani, A., & Tamalapakula, J. L. (2021). Influence of flow and thermal characteristics on thermal comfort inside an automobile cabin under the effect of solar radiation.
Applied Thermal Engineering,
203, 117946.
https://doi.org/10.1016/j.applthermaleng.2021.117946
Cai, C., Ming, T., Fang, W., Richter, R.K., & Peng, C. (2020). The effect of turbulence induced by different kinds of moving vehicles in street canyons.
Sustainable Cities and Society,
54, 102015.
https://doi.org/10.1016/j.scs.2020.102015
Cao, Q., Liu, M., Li, X., Lin, C. H., Wei, D., Ji, S., Zhang, T. T., & Chen, Q. (2022). Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD.
Building and Environment.
207, 108413.
https://doi.org/10.1016/j.buildenv.2021.108413
Chang, T., Sheu, J., Huang, J., Lin, Y., & Chang, C. (2018). Development of a CFD model for simulating vehicle cabin indoor air quality.
Transportation Research Part D: Transport and Environment,
62, 433–440.
https://doi.org/10.1016/j.trd.2018.03.018
Chuang, H., Lin, L., Hsu, Y., Ma, C., & Chuang, K. (2013). In-car particles and cardiovascular health: an air conditioning-based intervention study.
Science of The Total Environment,
452–453, 309–313.
https://doi.org/10.1016/j.scitotenv.2013.02.097
Dhand, R., & Li, J. (2020). Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2.
American Journal of Respiratory and Critical Care Medicine,
202(5), 635–P18.
https://doi.org/10.1164/rccm.202004-1263PP
Hatif, I. H., Mohamed Kamar, H., Kamsah, N., Wong, K. Y., & Tan, H. (2023). Influence of office furniture on exposure risk to respiratory infection under mixing and displacement air distribution systems.
Building and Environment,
239, 110292.
https://doi.org/10.1016/j.buildenv.2023.110292
Kong, X., Guo, C., Lin, Z., Duan, S., He, J., Ren, Y., & Ren, J. (2021). Experimental study on the control effect of different ventilation systems on fine particles in a simulated hospital ward.
Sustainable Cities and Society,
73, 103102.
https://doi.org/10.1016/j.scs.2021.103102
Lednicky, J. A., Lauzardo, M., Alam, M. M., Elbadry, M. A., Stephenson, C. J., Gibson, J. C., & Morris, J. G., Jr (2021). Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness.
International Journal of Infectious Diseases,
108, 212–216.
https://doi.org/10.1016/j.ijid.2021.04.063
Li, L., Liang, X., Jiang, Q., Wang, H., & Wang, B. (2020). Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association (2020) An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19).
Chinese Journal of Epidemiology,
41(2), 139–144.
https://doi.org/10.3760/cma.j.issn.0254-6450.2020.02.002
Li, X., Jiang, J., Wang, D., Deng, J., He, K., & Hao, J. (2021). Transmission of coronavirus via aerosols and influence of environmental conditions on its transmission.
Environmental Science,
42(07), 3091–3098.
https://doi.org/10.13227/j.hjkx.202010033
Li, X., Niu, J., & Gao, N. (2011). Spatial distribution of human respiratory droplet residuals and exposure risk for the co-occupant under different ventilation methods.
HVAC&R Research,
17, 432–445.
https://doi.org/10.1080/10789669.2011.578699
Liu, S., Zhao, X., Nichols, S. R., Bonilha, M. W., Derwinski, T., Auxier, J. T., & Chen, Q. (2022). Evaluation of airborne particle exposure for riding elevators.
Building and Environment,
207, 108543.
https://doi.org/10.1016/j.buildenv.2021.108543
Luan, Y., Zhang, L., Yin, Y. Yan, L., Wu, X., & Sun, T. (2022). Ventilation structure optimization and virus spreading law in large indoor places.
Environmental Engineering,
40(12), 180–186.
https://doi.org/10.13205/j.hjgc.202212024
Mao, Y., Wang, J., & Li, J. (2018). Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating.
Applied Thermal Engineering,
137, 356–367.
https://doi.org/10.1016/j.applthermaleng.2018.03.099
Mathai, V., Das, A., & Breuer, K. (2022). Aerosol transmission in passenger car cabins: Effects of ventilation configuration and driving speed.
Physics of Fluids,
34(2), 021904.
https://doi.org/10.1063/5.0079555
Mathai, V., Das, A., Bailey, J. A., & Breuer, K. (2021). Airflows inside passenger cars and implications for airborne disease transmission.
Science Advances,
7(1), eabe0166.
https://doi.org/10.1126/sciadv.abe0166
Peng, N. N., Chow, K. W., & Liu, C. H. (2021). Computational study on the transmission of the SARS-CoV-2 virus through aerosol in an elevator cabin: Effect of the ventilation system.
Physics of Fluids,
33(10), 103325.
https://doi.org/10.1063/5.0068244
Qian, H., Li, Y., Nielsen, P. V., Hyldgaard, C. E., Wong, T. W., & Chwang, A. T. (2006). Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems.
Indoor Air,
16(2), 111–128.
https://doi.org/10.1111/j.1600-0668.2005.00407.x
Rencken, G., Rutherford, E., Ghanta, N., Kongoletos, J., & Glicksman, L. R. (2021). Patterns of SARS-CoV-2 aerosol spread in typical classrooms.
Building and Environment,
204, 108167–108167.
https://doi.org/10.1016/j.buildenv.2021.108167
Sen, N., & Singh, K. K. (2021). Spread of virus laden aerosols inside a moving sports utility vehicle with open windows: A numerical study.
Physics of Fluids,
33, 095117.
https://doi.org/10.1063/5.0061753
Shao, S., Zhou, D., He, R., Li, J., Zou, S., Mallery, K., Kumar, S., Yang, S., & Hong, J. (2021). Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings.
Journal of Aerosol Science.
151, 105661.
https://doi.org/10.1016/j.jaerosci.2020.105661
Shinohara, N., Ogata, M., Kim, H., Kagi, N., Tatsu, K., Inui, F., & Naito, W. (2023). Evaluation of shields and ventilation as a countermeasure to protect bus drivers from infection.
Environmental Research,
216(Pt 3), 114603.
https://doi.org/10.1016/j.envres.2022.114603
Shu, S., Mitchell, T. E., Wiggins, M. R., You, S., Thomas, H., & Li, C. (2022). How opening windows and other measures decrease virus concentration in a moving car.
Engineering Computations,
39(6), 2350–2366.
https://doi.org/10.1108/EC-11-2021-0666
Teppner, R., Langensteiner, B., Meile, W., Brenn, G., & Kerschbaumer, S. (2014). Air change rates driven by the flow around and through a building storey with fully open or tilted windows: An experimental and numerical study.
Energy and Buildings, 76, 640-653.
https://doi.org/10.1016/j.enbuild.2014.07.020
van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.
The New England Journal of Medicine,
382(16), 1564–1567.
https://doi.org/10.1056/NEJMc2004973
Wang, C. C., Prather, K. A., Sznitman, J., Jimenez, J. L., Lakdawala, S. S., Tufekci, Z., & Marr, L. C. (2021). Airborne transmission of respiratory viruses.
Science,
373(6558), eabd9149.
https://doi.org/10.1126/science.abd9149
Wang, D., Sun, M., Shen, X., & Chen, A. (2023a) Aerodynamic characteristics and structural behavior of sound barrier under vehicle-induced flow for five typical vehicles.
Journal of Fluids and Structures,
117, 103816.
https://doi.org/10.1016/j.jfluidstructs.2022.103816
Wang, T., Shi, F., Shi, F., Li, C., Zhang, L., Wang, J., Jiang, C., Qian, B., Dai, L., & Ji, P. (2023b). Numerical study of the effect of composition models on cough droplet propagation distributions in confined space. Building and Environment, 234, 110117. https://doi.org/10.1016/j.buildenv.2023.110117
Wu, F., Li, X., Cui, Q., Li, H., Fan, Z., & Xu, R. (2023). Investigation on the transmission profile of coughing droplets in passenger compartment of subway train.
Journal of Railway Science and Engineering,
20 (12), 4529–4540
https://doi.org/10.19713/j.cnki.43-1423/u.T20230162
Yan, Y., Li, X., & Tu, J. (2019). Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space. Building and Environment, 148, 96–106. https://doi.org/10.1016/j.buildenv.2018.10.039
You, R., Zhang, Y., Zhao, X., Lin, C. H., Wei, D., Liu, J., & Chen, Q. (2018). An innovative personalized displacement ventilation system for airliner cabins.
Building and Environment,
137, 41–50.
https://doi.org/10.1016/j.buildenv.2018.03.057
Zhang, R., Li, Y., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19.
Proceedings of the National Academy of Sciences of the United States of America,
117(26), 14857–14863.
https://doi.org/10.1073/pnas.2009637117
Zhao, X., Liu, S., Yin, Y., Zhang, T. T., & Chen, Q. (2022). Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods.
Indoor Air,
32(6), e13056.
https://doi.org/10.1111/ina.13056