Anjum, N., & Tanaka, N. (2020). Study on the flow structure around discontinued vertically layered vegetation in an open channel.
Journal of Hydrodynamics, 32, 454-467.
https://doi.org/10.1007/s42241-019-0040-2
Aydogdu, M. (2023). Analysis of the effect of rigid vegetation patches on the hydraulics of an open channel flow with Realizable k-ε and Reynolds stress turbulence models.
Flow Measurement and Instrumentation, 94, 102477.
https://doi.org/10.1016/j.flowmeasinst.2023.102477
Baptist, M. J., Babovic, V., Uthurburu, J., Keijzer, M, Uittenbogaard, R. E., Mynett, A., & Verwey, A. (2010). On inducing equations for vegetation resistance.
Journal of Hydraulic Research, 45(4), 435-450.
http://dx.doi.org/10.1080/00221686.2007.9521778
Erduran, K. S., & Kutija, V. (2003). Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-submerged vegetation.
Journal of Hydroinformatics, 5(3), 189-202.
https://doi.org/10.2166/hydro.2003.0015
Fischer-Antze, T., Stoesser, T., Bates, P., & Olsen, N. R. B. (2001). 3D numerical modelling of open-channel flow with submerged vegetation.
Journal of Hydraulic Research, 39(3), 303-310.
https://doi.org/10.1080/00221680109499833
Huai, W. X., Zeng, Y. H., Xu, G. Z., & Yang, Z. H. (2009). Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation.
Advances in Water Resources, 32(4), 487-492.
https://doi.org/10.1016/j.advwatres.2008.11.014
Hussain, A. A., Al-Obaidi, M. A., & Rashid, F. L. (2023). Modeling of drag coefficient under emergent and submerged flexible vegetated flow.
Physics of Fluids, 35(6).
https://doi.org/10.1063/5.0153489
Jiménez-Hornero, F. J., Giráldez, J. V., Laguna, A. M., Bennett, S. J., & Alonso, C. V. (2007). Modelling the effects of emergent vegetation on an open-channel flow using a lattice model.
International Journal for Numerical Methods in Fluids, 55(7), 655-672.
https://doi.org/10.1002/fld.1488
Katul, G., Poggi, D., Cava, D., & Finnigan, J. (2006). The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer
. Boundary-Layer Meteorology, 120(3), 367-375.
https://doi.org/10.1007/s10546-006-9064-6
Kim, S. J. (2011). 3D numerical simulation of turbulent open-channel flow through vegetation. (Doctoral dissertation, Georgia Institute of Technology).
Kleeberg, A., KÃHler, J. A. N., Sukhodolova, T., & Sukhodolov, A. (2010). Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river.
Freshwater Biology, 55(2), 326-345.
https://doi.org/10.1111/j.1365-2427.2009.02277.x
Knight, D. W., Sterling, M., & Sharifi, S. (2009). A novel application of a multi-objective evolutionary algorithm in open channel flow modelling.
Journal of Hydroinformatics, 11(1), 31-50.
https://doi.org/10.2166/hydro.2009.033
Kubrak, E., Kubrak, J., & Rowiński, P. M. (2008).
Vertical velocity distributions through and above submerged, flexible vegetation.
Hydrological Sciences Journal, 53(4), 905-920.
https://doi.org/10.1623/hysj.53.4.905
Kubrak, E., Kubrak, J., & Rowiński, P. M. (2012). Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea Canadensis).
Acta Geophysica, 61(1), 194-210.
https://doi.org/10.2478/s11600-012-0051-7
Lee, J. K., Roig, L. C., Jenter, H. L., & Visser, H. M. (2004). Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades.
Ecological Engineering, 22(4-5), 237-248.
https://doi.org/10.1016/j.ecoleng.2004.05.001
Ren, J. T., Wu, X. F., & Zhang, T. (2021). A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation.
Journal of Hydrodynamics, 33, 833-843.
https://doi.org/10.1007/s42241-021-0063-3
Rowiński, P. M., & Kubrak, J. (2002). A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation.
Hydrological Sciences Journal, 47(6), 893-904.
https://doi.org/10.1080/02626660209492998
Stoesser, T., Salvador, G. P., Rodi, W., & Diplas, P. (2009). Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation.
Transport in Porous Media, 78(3), 347-365.
https://doi.org/10.1007/s11242-009-9371-8
Tang, H., Tian, Z., Yan, J., & Yuan, S. (2014). Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation.
Advances in Water Resources, 69, 134-145.
https://doi.org/10.1016/j.advwatres.2014.04.006
Tsujimoto, T., & Kitamura, T. (1990). Velocity profile of flow in vegetated-bed channels. KHL Progressive Report, 1, 43-55.
West, P., Hart, j., Guymer, I., & Stovin, V. (2016). Development of a laboratory system and 2D routing analysis to determine solute mixing within aquatic vegetation.
Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces, 49-61.
http://dx.doi.org/10.1007/978-3-319-27750-9_5
Wilson, C. A. M. E., Yagci, O., Rauch, H. P., & Olsen, N. R. B. (2006). 3D numerical modelling of a willow vegetated river/floodplain system.
Journal of hydrology, 327(1-2), 13-21.
https://doi.org/10.1016/j.jhydrol.2005.11.027