ANSYS. (2011). Ansys Fluent theory guide. Monograph. Canonsburg, USA.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002) A fast and elitist multi-objective genetic algorithm: NSGA-I.
IEEE Transactions on Evolutionary Computation,
6(2), 182-197.
https://doi.org/10.1109/4235.996017
Dobrica, M. B., Fillon, M., & Pascovici, M. D. (2010). Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach.
Proceedings of the Institution of Mechanical Engineers. Part J: Engineering Tribology, 224(8), 737-750.
https://journals.sagepub.com/doi/10.1243/13506501JET673
Gherca, A. R., Maspeyrot, P., Hajjam, M., & Fatu, A. (2013). Influence of texture geometry on the hydrodynamic performances of parallel bearings.
Tribology Transactions,
56(3), 321-332.
https://doi.org/10.1080/10402004.2012.752550
Guo, S. H. (2023). Theoretical analysis and experimental studay on the influence of surface micro texture on lubrication characteristics of journal bearing [Doctoral dissertation, Shandong University of Science and Technology].
Ilka, R., Alinejad-Beromi. Y., & Yaghobi, H. (2018) Cogging torque reduction of permanent magnet synchronous motor using multi-objective optimization.
Mathematics and Computers in Simulation,
153, 83-95.
https://doi.org/10.1016/j.matcom.2018.05.018
Ji, J. H., Deng, Z. W., Chen, T. Y., Fang, L. N., & Fu, Y. H. (2020). Analysis of hydrodynamic lubrication of partially textured infinitely long tilting pad thrust bearing.
Surface Technology,
50(2), 246-253.
https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.02.025
Kango, S., Singh, D., & Sharma, R. K. (2012). Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing.
Meccanica,
47(2), 469-482.
https://doi.org/10.1007/s11012-011-9460-y
Li, Z. Y., Xiong, X. H., &Wu, J. M. (2004). Introduction to common numerical methods in computational fluid mechanics. Guangdong Shipbuilding, 3, 5-8.
Mallya, R., Shenoy, S. B., & Pai, R. (2016). Static characteristics of misaligned multiple axial groove water-lubricated bearing in the turbulent regime.
Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 231(3), 385-398.
https://doi.org/10.1177/1350650116657757
Marian, V. G., Gabriel, D., Knoll, G., & Filippone, S. (2011). Theoretical and experimental analysis of a laser textured thrust bearing.
Tribology. Letters,
44(3), 335-343.
https://doi.org/10.1007/s11249-011-9857-8
Marian, V. G., Kilian, M., & Scholz, W. (2007). Theoretical and experimental analysis of a partially textured thrust bearing with square dimples.
Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,
221(7), 771-778.
https://doi.org/10.1243/13506501JET292
Qiao, J. S., Zhou, G. W., Pu, W., Li, R., He, M. (2022). Coupling analysis of turbulent and mixed lubrication of water-lubricated rubber bearings.
Tribology International, 172, 107644.
https://doi.org/10.1016/j.triboint.2022.107644.
Rao, T. V. V. L. N., Rani, A. M. A., Nagarajan, T., & Hashim, F. M. (2014). Analysis of couple stress fluid lubricated partially textured slip slider and journal bearing using narrow groove theory.
Tribology International,
69, 1-9.
https://doi.org/10.1016/j.triboint.2013.08.006
Tan, K. H. R. T. (2007). Modelling of fluid flow in multiple axial groove water lubricated bearings using computational fluid dynamics [Masters thesis, Queensland University of Technology].
Uddin, M. S., Ibatan, T., & Shankar, S. (2017). Influence of surface texture shape, geometry and orientation on hydrodynamic lubrication performance of plane-to-plane slider surfaces.
Lubrication Science,
29(3), 153- 181.
https://doi.org/10.1002/ls.1362
Wang, X., Kato, K., Adachi, K., & Aizawa, K. (2003). Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water.
Tribology International,
36(3), 189-197.
https://doi.org/10.1016/S0301-679X(02)00145-7
Wang, X., Shi. L., Dai, Q., Huang, W., Wang, X. L. (2018) Multi-objective optimization on dimple shapes for gas face seal.
Tribology International,
123, 216-223.
https://doi.org/10.1016/j.triboint.2018.03.011
Wang, Y. J. (2021). Hydrodynamic lubrication mechanism and multi-objective driven optimization design of textured friction contacts [Master thesis, China University of Petroleum].
Wang, Y. Z., Yin, Z. W., Jiang, D, Gao, G. Y., Zhang, X. L. (2016). Study of the lubrication performance of water-lubricated journal bearings with CFD and FSI method.
Industrial Lubrication and Tribology, 68(3), 341-348.
https://doi/10.1108/ILT-04-2015-0053/full/html
Wu, Z., Guo, Z., & Yuan, C. (2020). Insight into water lubrication performance of polyetheretherketone.
Journal of Applied Polymer Science,
138(4), 49701.
https://doi.org/10.1002/app.49701
Xi-Jun, H., Hong-Shan, X. U., Ya-Lin, C., Xuan, X., Shang, X. U., & Cheng, W. (2018). Numerical analysis on lubrication performance of laser micro-textured roller bearings.
Surface Technology,
47(3), 36-41.
https://doi.org/10.16490/j.cnki.issn.1001-3660.2018.03.006
Ye, X., Wang, J., Zhang, D., Hu, J., & Feng, Y. (2014). The dynamic characteristic analysis of the water lubricated bearing-rotor system in seawater desalination pump.
Advances in Mechanical Engineering, 356578-356578.
https://doi.org/10.1155/2014/356578
Ye, X., Wang, J., Zhang, D., Hu, L., & She, X. (2016). Experimental research of journal orbit for water-lubricated bearing.
Mathematical Problems in Engineering, 8361596.
https://doi.org/10.1155/2016/8361596
Zhang, S. (2020). Liquid film cavitation mechanism and dynamic characteristics of journal bearings [Master thesis, China University of Petroleum].
Zhou, G. W. (2013). Mixed lubrication analysis and dynamic performance optimization of water lubricated rubber alloy bearings [Doctoral dissertation, Chongqing University].