Document Type : Regular Article
Authors
1 Hubei Key Laboratory of Petroleum Drilling and Production Engineering, Wuhan, Hubei, 430100, China
2 Laboratory of Multiphase Pipe Flow, Gas Lift Innovation Center, China National Petroleum Corp, Yangtze University, Wuhan, Hubei, 430100, China
Abstract
Keywords
Main Subjects
Abrahamson, J. (2020). Fluent Theory Guide. http://www.ansys.com
Aghaee, M., Ganjiazad, R., Roshandel, R., & Ashjari, M. A. (2017). Two-phase flow separation in axial free vortex flow. The Journal of Computational Multiphase Flows, 9(3), 105–113. https://doi.org/ 10.1177/1757482X17699411
Al-Kayiem, H. H., Hamza, J. E., & Lemmu, T. A. (2020). Performance enhancement of axial concurrent liquid–liquid hydrocyclone separator through optimization of the swirler vane angle. Journal of Petroleum Exploration and Production Technology, 10(7), 2957–2967. https://doi.org/10.1007/s13202-020-00903-7
Baker, T. J. (2023). Fluent User’s Guide. http://www.ansys.com
Boruah, M. P., Sarker, A., Randive, P. R., Pati, S., & Sahu, K. C. (2021). Tuning of regimes during two-phase flow through a cross-junction. Physics of Fluids, 33(12), 122101. https://doi.org/ 10.1063/5.0071743
Celis, G. E. O., Loureiro, J. B. R., Lage, P. L. C., & Silva Freire, A. P. (2022). The effects of swirl vanes and a vortex stabilizer on the dynamic flow field in a cyclonic separator. Chemical Engineering Science, 248, 117099. https://doi.org/ 10.1016/j.ces.2021.117099
Chi, Y., Zhang, R., Meng, X., Xu, J., Du, W., Liu, H., & Liu, Z. (2021). Numerical simulation of two-phase flow and droplet breakage of glycerin-water mixture and kerosene in the cyclone reactor. Chinese Journal of Chemical Engineering, 34, 150–159. https://doi.org/ 10.1016/j.cjche.2021.02.021
Clausse, A., & López De Bertodano, M. (2021). Natural modes of the two-fluid model of two-phase flow. Physics of Fluids, 33(3), 033324. https://doi.org/ 10.1063/5.0046189
Dyakowski, T., & Williams, R. A. (1993). Modelling turbulent flow within a small-diameter hydrocyclone. Chemical Engineering Science, 48(6), 1143–1152. https://doi.org/10/ckqn3h
Gong, H., Luo, X., Peng, Y., Yu, B., Yang, Y., & Zhang,
Gorman, J. M., Sparrow, E. M., Ilamparuthi, S., & Minkowycz, W. J. (2016). Effect of fan-generated swirl on turbulent heat transfer and fluid flow in a pipe. International Journal of Heat and Mass Transfer, 95, 1019–1025. https://doi.org/ 10.1016/j.ijheatmasstransfer.2015.12.038
Guizani, R., Mhiri, H., & Bournot, P. (2022). Numerical investigation of the vortex breaker for a dynamic separator using Computational Fluid Dynamics. Journal of Applied Fluid Mechanics, 16(6),1099-1107. https://doi.org/ 10.47176/jafm.16.06.1553
Ji, Y.(2015). Theoretical & Experimental Study onto the Voraxial-Separator (PhD. dissertation, Beijing University of Chemical Technology). https://kns.cnki.net/KCMS/detail/detail.asp
Ji, Y., Chen, J., Cai, X., Shang, C., & Zhang, M. (2017). Design and experimental study of vortex generator based on neural network. China Petroleum Machinery, 45(3), 75–84. https://doi.org/10.16082/j.cnki.issn.1001-4578.2017.03.017.
Ji, Y., Chen, J., Jiao, X., Cai, X., & Li, P. (2015). Theoretical Modeling and numerical simulation of axial-vortex separation technology used for oily water treatment. Separation Science and Technology, 50(12), 1870–1881. https://doi.org/ 2023,16(6):1099-1107
Ji, Y., Chen, J., Zhou, D., Li, C., Li, R., Zhou, S., & Gong, J. (2012). Research on the operating mechanism of axial vortex separator and the optimal cone angle of barrel. China Petroleum Machinery, 40(7), 106–112. https://doi.org/10.16082/j.cnki.issn.1001-4578.2012.07.002.
Karagoz, I., Avci, A., Surmen, A., & Sendogan, O. (2013). Design and performance evaluation of a new cyclone separator. Journal of Aerosol Science, 59, 57–64. https://doi.org/ 10.1016/j.jaerosci.2013.01.010
Kou, J., Jiang, Z., & Cong, Y. (2021). Separation characteristics of an axial hydrocyclone separator. Processes, 9(12), 2288. https://doi.org/ 10.3390/pr9122288
Liu, H., Xu, J., Wu, Y., & Zheng, Z. (2010). Numerical study on oil and water two-phase flow in a cylindrical cyclone. Journal of Hydrodynamics, 22(S1), 790–795. https://doi.org/ 10.1016/S1001-6058(10)60038-8
Liu, H., Xu, J., Zhang, J., Sun, H., Zhang, J., & Wu, Y. (2012). Oil/Water separation in a liquid-liquid cylindrical cyclone. Journal of Hydrodynamics, 24(1), 116–123. https://doi.org/ 10.1016/S1001- 6058(11)60225-4
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed). Pearson Education Ltd. https://www.pearsoned.co.uk
Young, G. A. B., Wakley, W. D., Taggart, D. L., Andrews, S. L., & Worrell, J. R. (1994). Oil-water separation using hydrocyclones: An experimental search for optimum dimensions. Journal of Petroleum Science and Engineering, 11(1), 37–50. https://doi.org/ 10.1016/0920-4105(94)90061-2
Yu, A., Wang, C., Liu, H., & Khan, Md. S. (2021). Computational modeling of flow characteristics in three products hydrocyclone screen. Processes, 9(8), 1295. https://doi.org/ 10.3390/pr9081295
Zandie, M., Kazemi, A., Ahmadi, M., & Moraveji, M. K. (2021). A CFD investigation into the enhancement of down-hole de-oiling hydro cyclone performance. Journal of Petroleum Science and Engineering, 199, 108352. https://doi.org/10.1016/j.petrol.2021.108352
Zhang, J., He, Y. T., Liu, S., & Xu, J. Y. (2022). Oil-water separation in a cylindrical cyclone with vortex finder. Physics of Fluids, 34(3), 033314. https://doi.org/ 10.1063/5.0085029
Zhu, D. Z., Han, D., He, W. F., Chen, J. J., Ji, Y. Y., Peng, T., & Gu, Y. W. (2022). Optimization and assessment of the comprehensive performance of an axial separator by response surface methodology. Journal of Applied Fluid Mechanics, 16(1). https://doi.org/10.47176/jafm.16.01.1367