Ali, S., Habchi, C., Menanteau, S., Lemenand, T., & Harion, J. L. (2015). Heat transfer and mixing enhancement by free elastic flaps oscillation.
International Journal of Heat and Mass Transfer,
85, 250-264.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.122
Aridi, R., Ali, S., Lemenand, T., Faraj, J., & Khaled, M. (2022). CFD analysis on the spatial effect of vortex generators in concentric tube heat exchangers–A comparative study.
International Journal of Thermofluids,
16, 100247.
https://doi.org/10.1016/j.ijft.2022.100247
Arjmandi, H., Amiri, P., & Pour, M. S. (2020). Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study.
Thermal Science and Engineering Progress,
18, 100514.
https://doi.org/10.1016/j.tsep.2020.100514
Babu, R., Kumar, P., Roy, S., & Ganesan, R. (2022). A comprehensive review on compound heat transfer enhancement using passive techniques in a heat exchanger.
Materials Today: Proceedings,
54, 428-436.
https://doi.org/10.1016/j.matpr.2021.09.541
Benhanifia, K., Redouane, F., Lakhdar, R., Brahim, M., Al-Farhany, K., Jamshed, W., Eid, M. R., El Din, S. M., & Raizah, Z. (2022). Investigation of mixing viscoplastic fluid with a modified anchor impeller inside a cylindrical stirred vessel using Casson–Papanastasiou model.
Scientific Reports,
12(1), 17534.
https://doi.org/10.1038/s41598-022-22415-6
Bennour, E., Kezrane, C., Kaid, N., Alqahtani, S., Alshehery, S., & Menni, Y. (2023). Improving mixing efficiency in laminar-flow static mixers with baffle inserts and vortex generators: A three-dimensional numerical investigation using corrugated tubes.
Chemical Engineering and Processing-Process Intensification,
193, 109530.
https://doi.org/10.1016/j.cep.2023.109530
Biswas, G., Chattopadhyay, H., & Sinha, A. (2012). Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators.
Heat Transfer Engineering,
33(4-5), 406-424.
https://doi.org/10.1080/01457632.2012.614150
Budiman, A. C., Mitsudharmadi, H., Bouremel, Y., Winoto, S. H., & Low, H. T. (2016). Effects of wavy channel entrance design on streamwise counter-rotating vortices: a visualization study.
Journal of Applied Fluid Mechanics,
9(5), 2161-2166.
https://doi.org/10.18869/acadpub.jafm.68.236.25657
Cao, Z., Wu, Z., Luan, H., & Sunden, B. (2017). Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts.
Numerical Heat Transfer, Part A: Applications,
72(1), 21-39.
https://doi.org/10.1080/10407782.2017.1353386
Chtourou, S., Djemel, H., Kaffel, M., & Baccar, M. (2021). Predicting the effect of the rib pitch on thermal performance factor of small channels plate heat exchangers fitted with Y and C shapes obstacles.
SN Applied Sciences,
3, 1-28.
https://doi.org/10.1007/s42452-021-04473-z
Dahmani, A., Muñoz-Cámara, J., Laouedj, S., & Solano, J. P. (2022). Heat transfer enhancement of ferrofluid flow in a solar absorber tube under non-uniform magnetic field created by a periodic current-carrying wire.
Sustainable Energy Technologies and Assessments,
52, 101996.
https://doi.org/10.1016/j.seta.2022.101996
Dal Jeong, Y., Ahn, K. H., Kim, M. J., & Lee, J. H. (2022). Heat transfer enhancement in a channel flow using two wall-mounted flexible flags with a confined cylinder.
International Journal of Heat and Mass Transfer,
195, 123185.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123185
Deshmukh, P. W., Prabhu, S. V., & Vedula, R. P. (2022). Heat transfer augmentation for turbulent flow in circular tubes using inserts with multiple curved vortex generator elements.
International Journal of Thermal Sciences,
171, 107203.
https://doi.org/10.1016/j.ijthermalsci.2021.107203
Dormohammadi, R., Farzaneh-Gord, M., Ebrahimi-Moghadam, A., & Ahmadi, M. H. (2018). Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels.
Journal of Molecular Liquids,
269, 229-240.
https://doi.org/10.1016/j.molliq.2018.07.119
Ferrer, V., Mil-Martίnez, R., Ortega, J., & Vargas, R. O. (2017). Influence of smooth constriction on microstructure evolution during fluid flow through a tube.
Journal of Applied Fluid Mechanics,
10(6), 1583-1591.
https://doi.org/10.29252/jafm.73.245.27846
Ghachem, K., Aich, W., & Kolsi, L. (2021). Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels.
Case Studies in Thermal Engineering, 24, 100822.
https://doi.org/10.1016/j.csite.2020.100822
Ghasemi, S. E. (2023). Hydrothermal analysis of turbulent fluid flow inside a novel enhanced circular tube for solar collector applications.
Waves in Random and Complex Media,
33(1), 225-236.
https://doi.org/10.1080/17455030.2022.2138629
Ghasemi, S. E., & Ranjbar, A. A. (2016b). Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study.
Journal of Molecular Liquids,
222, 159-166.
https://doi.org/10.1016/j.molliq.2016.06.091
Ghasemi, S. E., & Ranjbar, A. A. (2024). A novel numerical study on the melting process of phase change materials in a heat exchanger for energy storage.
Numerical Heat Transfer, Part A: Applications,
85(2), 237-249.
https://doi.org/10.1080/10407782.2023.2181893
Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study.
Journal of Molecular Liquids,
248, 264-270.
https://doi.org/10.1016/j.molliq.2017.10.062
Haque, M. R., & Rahman, A. (2020). Numerical investigation of convective heat transfer characteristics of circular and oval tube banks with vortex generators.
Journal of Mechanical Science and Technology,
34, 457-467.
https://doi.org/10.1007/s12206-019-1044-0
Jayadevan, P. C., Siddharth, R., & Kamath, P. M. (2019). Modeling Frictional Characteristics of Water Flowing Through Microchannel.
Journal of Applied Fluid Mechanics,
12(1), 243-255.
https://doi.org/10.29252/JAFM.75.253.28913
Kolsi, L., Hussein, A. K., Borjini, M. N., Mohammed, H. A., & Aïssia, H. B. (2014). Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with water-Al
2O
3 nanofluid.
Arabian Journal for Science and Engineering, 39, 7483-7493.
https://doi.org/10.1007/s13369-014-1341-y
Kumar, S., & Prasad, L. (2023). Performance intensification analysis of laminar flow through heat exchanger tube with drumet-cut twisted tape inserts.
Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-13.
https://doi.org/10.1007/s41939-023-00286-2
Lei, Y., Zheng, F., Song, C., & Lyu, Y. (2017). Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators.
International Journal of Heat and Mass Transfer,
111, 299-311.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.101
Liu, P., Zheng, N., Shan, F., Liu, Z., & Liu, W. (2018). An experimental and numerical study on the laminar heat transfer and flow characteristics of a circular tube fitted with multiple conical strips inserts.
International Journal of Heat and Mass Transfer,
117, 691-709.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.035
Maouedj, R., Menni, Y., Inc, M., Chu, Y. M., Ameur, H., & Lorenzini, G. (2021). Simulating the turbulent hydrothermal behavior of Oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators.
CMES-Computer Modeling in Engineering & Sciences,
126(3), 855-889.
https://doi.org/10.32604/cmes.2021.014524
Maradiya, C., Vadher, J., & Agarwal, R. (2018). The heat transfer enhancement techniques and their thermal performance factor.
Beni-Suef University Journal of Basic and Applied Sciences,
7(1), 1-21.
https://doi.org/10.1016/j.bjbas.2017.10.001
Mashayekhi, R., Khodabandeh, E., Bahiraei, M., Bahrami, L., Toghraie, D., & Akbari, O. A. (2017). Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems: a two-phase simulation.
Energy Conversion and Management,
151, 573-586.
https://doi.org/10.1016/j.enconman.2017.09.025
Mehta, S. K., Pati, S., & Baranyi, L. (2022). Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel.
Case Studies in Thermal Engineering,
31,101796.
https://doi.org/10.1016/j.csite.2022.101796
Menni, Y., & Azzi, A. (2018). Numerical analysis of thermal and aerodynamic fields in a channel with cascaded baffles.
Periodica Polytechnica Mechanical Engineering, 62(1), 16-25.
https://doi.org/10.3311/PPme.10613
Menni, Y., Ameur, H., Chamkha, A. J., Inc, M., & Almohsen, B. (2020a). Heat and mass transfer of oils in baffled and finned ducts.
Thermal Science,
24(Suppl. 1), 267-276.
https://doi.org/10.2298/TSCI20S1267M
Menni, Y., Chamkha, A. J., Azzi, A., & Zidani, C. (2020b). Numerical analysis of fluid flow and heat transfer characteristics of a new kind of vortex generators by comparison with those of traditional vortex generators.
International Journal of Fluid Mechanics Research,
47(1), 23-42.
https://doi.org/10.1615/InterJFluidMechRes.2019026753
Menni, Y., Chamkha, A. J., Azzi, A., Zidani, C., & Benyoucef, B. (2019a). Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers.
Mathematical Modelling of Engineering Problems,
6(1), 77-84.
https://doi.org/10.18280/mmep.060110
Menni, Y., Chamkha, A. J., Lorenzini, G., & Benyoucef, B. (2019b). Computational fluid dynamics based numerical simulation of thermal and thermo-hydraulic performance of a solar air heater channel having various ribs on absorber plates.
Mathematical Modelling of Engineering Problems,
6(2), 170-174.
https://doi.org/10.18280/mmep.060203
Menni, Y., Chamkha, A. J., Zidani, C., & Benyoucef, B. (2019c). Heat transfer in air flow past a bottom channel wall-attached diamond-shaped baffle–using a CFD technique.
Periodica Polytechnica Mechanical Engineering,
63(2), 100-112.
https://doi.org/10.3311/PPme.12490
Menni, Y., Chamkha, A. J., Zidani, C., & Benyoucef, B. (2019d). Heat and nanofluid transfer in baffled channels of different outlet models.
Mathematical Modelling of Engineering Problems,
6(1), 21-28.
https://doi.org/10.18280/mmep.060103
Moghaddam, M. A. E., & Ganji, D. D. (2021). A comprehensive evaluation of the vertical triplex-tube heat exchanger with PCM, concentrating on flow direction, nanoparticles and multiple PCM implementation.
Thermal Science and Engineering Progress,
26, 101124.
https://doi.org/10.1016/j.tsep.2021.101124
Mohammed, A. M., Kapan, S., Sen, M., & Celi̇k, N. (2021). Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator.
Case Studies in Thermal Engineering,
28, 101680.
https://doi.org/10.1016/j.csite.2021.101680
Rahimi, A., Kasaeipoor, A., Malekshah, E. H., & Kolsi, L. (2017). Experimental and numerical study on heat transfer performance of three-dimensional natural convection in an enclosure filled with DWCNTs-water nanofluid.
Powder Technology,
322, 340-352.
https://doi.org/10.1016/j.powtec.2017.09.008
Rajan, A., & Prasad, L. (2021). Performance investigation of laminar flow through tube fitted with hyperbolic-cut twisted tape inserts.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-21.
https://doi.org/10.1080/15567036.2021.2007311
Rebhi, R., Menni, Y., Lorenzini, G., & Ahmad, H. (2022). Forced-convection heat transfer in solar collectors and heat exchangers: a review.
Journal of Advanced Research in Applied Sciences and Engineering Technology,
26(3), 1-15.
https://doi.org/10.37934/araset.26.3.115
Saini, P., Dhar, A., & Powar, S. (2023). Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes.
International Journal of Heat and Mass Transfer,
209, 124142.
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124142
Sakhri, N., Menni, Y., Chamkha, A. J., Lorenzini, G., Ameur, H., Kaid, N., & Bensafi, M. (2021a). Experimental study of an earth-to-air heat exchanger coupled to the solar chimney for heating and cooling applications in arid regions.
Journal of Thermal Analysis and Calorimetry,
145, 3349-3358.
https://doi.org/10.1007/s10973-020-09867-6
Sakhri, N., Moussaoui, A., Menni, Y., Sadeghzadeh, M., & Ahmadi, M. H. (2021b). New passive thermal comfort system using three renewable energies: Wind catcher, solar chimney and earth to air heat exchanger integrated to real‐scale test room in arid region (Experimental study).
International Journal of Energy Research,
45(2), 2177-2194.
https://doi.org/10.1002/er.5911
Saysroy, A., & Eiamsa-Ard, S. (2017). Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts.
International Journal of Thermal Sciences,
121, 55-74.
https://doi.org/10.1016/j.ijthermalsci.2017.07.002
Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices.
Renewable and Sustainable Energy Reviews,
49, 444-469.
https://doi.org/10.1016/j.rser.2015.04.113
Silva, F. A., Júnior, L., Silva, J., Kambampati, S., & Salviano, L. (2021). Parametric optimization of a stamped longitudinal vortex generator inside a circular tube of a solar water heater at low Reynolds numbers.
SN Applied Sciences,
3, 1-13.
https://doi.org/10.1007/s42452-021-04723-0
Soltani-Tehrani, A., Tavakoli, M. R., & Salimpour, M. R. (2018). Using porous media to improve the performance of a wavy-tube heat exchanger.
FME Transactions,
46(4), 631-635.
https://doi.org/10.5937/fmet1804631S
Tian, M. W., Khorasani, S., Moria, H., Pourhedayat, S., & Dizaji, H. S. (2020). Profit and efficiency boost of triangular vortex-generators by novel techniques.
International Journal of Heat and Mass Transfer,
156, 119842.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119842
Valiallah Mousavi, S., Barzegar Gerdroodbary, M., Sheikholeslami, M., & Ganji, D. D. (2016). The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel.
The European Physical Journal Plus,
131, 1-12.
https://doi.org/10.1140/epjp/i2016-16347-4
Wang, J., Fu, T., Zeng, L., Lien, F. S., & Deng, X. (2022). Experimental investigation and numerical investigations of heat transfer enhancement in a tube with punched winglets.
International Journal of Thermal Sciences,
177, 107542.
https://doi.org/10.1016/j.ijthermalsci.2022.107542
Yongsiri, K., Eiamsa-Ard, P., Wongcharee, K., & Eiamsa-Ard, S. J. C. S. (2014). Augmented heat transfer in a turbulent channel flow with inclined detached-ribs.
Case Studies in Thermal Engineering,
3, 1-10.
https://doi.org/10.1016/j.csite.2013.12.003
Zheng, N., Liu, P., Shan, F., Liu, Z., & Liu, W. (2017). Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators.
Applied Thermal Engineering,
122, 642-652.
https://doi.org/10.1016/j.applthermaleng.2017.05.046