A General Scaling Law of Vascular Tree: Optimal Principle of Bifurcations in Pulsatile Flow

Document Type : Regular Article

Authors

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Murray’s law, as the best-known optimal relationship between bifurcation calibers, is obtained based on the assumption of steady-state Poiseuille blood flow and is mostly accurate in small vessels. In middle sized and large vessels such as the aorta and coronary arteries, the pulsatile nature of the flow is dominant and deviations from Murray law have been observed. In the present study, a general scaling law is proposed, which describes the optimum relationship between the characteristics of bifurcations and pulsatile flow. This scaling law takes into account the deviations from Murray law in large vessels, and proposes optimal flow (i.e. less flow resistance) for the full range of the vascular system, from the small vessels to large ones such aorta. As a general scaling law, it covers both symmetrical and asymmetrical bifurcations. One of the merits of this scaling law is that bifurcation characteristics solely depend on the Womersley number of parent vessels. The diameter ratios suggested by this scaling law are in acceptable agreement with available clinical morphometric data such as those reported for coronary arteries and aortoiliac bifurcations. A numerical simulation of pulsatile flow for several Womersley numbers in bifurcation models according to the proposed scaling law and Murray law has been performed, which suggests that the general scaling law provides less flow resistance and more efficiency than Murray law in pulsatile flow. 

Keywords

Main Subjects


Alnæs, M. S., Isaksen, J., Mardal, K. A., Romner, B., Morgan, M. K., & Ingebrigtsen, T. (2007). Computation of hemodynamics in the circle of willis. Stroke, 38(9), 2500-2505. https://doi.org/10.1161/STROKEAHA.107.482471
Arquizan, C., Trinquart, L., Touboul, P. J., Long, A., Feasson, S., Terriat, B., Mettail, M. P. G., Guidolin, B., Cohen, S., & Mas, J. L. (2011). Restenosis Is more frequent after carotid stenting than after endarterectomy. Stroke, 42(4), 1015-1020. https://doi.org/10.1161/STROKEAHA.110.589309
Asakura, T., & Karino, T. (1990). Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circulation research, 66(4), 1045-1066. https://doi.org/10.1161/01.res.66.4.1045
Baharoglu, M. I., Lauric, A., Wu, C., Hippelheuser, J., & Malek, A. M. (2014). Deviation from optimal vascular caliber control at middle cerebral artery bifurcations harboring aneurysms. Journal of Biomechanics, 47(13), 3318-3324. https://doi.org/10.1016/j.jbiomech.2014.08.012
Beare, R. J., Das, G., Ren, M., Chong, W., Sinnott, M. D., Hilton, J. E., Srikanth, V., & Phan, T. G. (2011). Does the principle of minimum work apply at the carotid bifurcation: a retrospective cohort study. BMCMedical Imaging, 11(1), 1-6. https://doi.org/10.1186/1471-2342-11-17
Bejan, A., & Lorente, S. (2008). Design with Constructal Theory. John Wiley & Sons. https://doi.org/10.1002/9780470432709
Cebral, J. R., Castro, M. A., Soto, O., Löhner, R., & Alperin, N. (2003). Blood-flow models of the circle of Willis from magnetic resonance data. Journal of Engineering Mathematics, 47(3), 369-386. https://doi.org/10.1023/b:engi.0000007977.02652.02
Dawson, C. A., Krenz, G. S., Karau, K. L., Haworth, S. T., Hanger, C. C., & Linehan, J. H. (1999). Structure-function relationships in the pulmonary arterial tree. Journal of Applied Physiology, 86(2), 569-583. https://doi.org/10.1152/jappl.1999.86.2.569
Elsayed, N., Ramakrishnan, G., Naazie, I., Sheth, S., & Malas, M. B. (2021). Outcomes of carotid revascularization in the treatment of restenosis after prior carotid endarterectomy. Stroke, 52(10), 3199-3208. https://doi.org/10.1161/STROKEAHA.120.033667
Finet, G., Gilard, M., Perrenot, B., Rioufol, G., Motreff, P., Gavit, L., & Prost, R. (2008). Fractal geometry of arterial coronary bifurcations: a quantitative coronary angiography and intravascular ultrasound analysis. EuroIntervention, 3(4), 490-498. https://doi.org/10.4244/EIJV3I4A87.
Golozar, M., Sayed Razavi, M., & Shirani, E. (2017). Theoretical and computational investigation of optimal wall shear stress in bifurcations: a generalization of Murray’s law. Scientia Iranica, 24(5), 2387-2395. https://doi.org/10.24200/sci.2017.4506
Haghighi, A. R., Asl, M. S., & Kiyasatfar, M. (2015). Mathematical modeling of unsteady blood flow through elastic tapered artery with overlapping stenosis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2), 571-578. https://doi.org/10.1007/s40430-014-0206-3
Haghighi, A. R., Kabdool, A. A., Asl, M. S., & kiyasatfar, M. (2016). Numerical investigation of pulsatile blood flow in stenosed artery. International Journal of Applied and Computational Mathematics, 2(4), 649-662. https://doi.org/10.1007/s40819-015-0084-0
Haidar, M. A., van Buchem, M. A., Sigurdsson, S., Gotal, J. D., Gudnason, V., Launer, L. J., & Mitchell, G. F. (2021). Wave reflection at the origin of a first-generation branch artery and target organ protection: The AGES-Reykjavik study. Hypertension, 77(4), 1169-1177. https://doi.org/ 10.1161/HYPERTENSIONAHA.120.16696
Harris, J., Paul, A., & Ghosh, B. (2023). Numerical simulation of blood flow in aortoiliac bifurcation with increasing degree of stenosis. Journal of Applied Fluid Mechanics, 16(8), 1601-1614. https://doi.org/10.47176/JAFM.16.08.1552
Horsfield, K., & Cumming, G. (1967). Angles of branching and diameters of branches in the human bronchial tree. Bulletin of Mathematical Biology, 29, 245-259. https://doi.org/10.1007/BF02476898
Hu, J., Zheng, Z.-F., Zhou, X. T., Liu, Y. Z., Sun, Z. M., Zhen, Y. S., & Gao, B. L. (2022). Normal diameters of abdominal aorta and common iliac artery in middle-aged and elderly Chinese Han people based on CTA. Medicine, 101(31), 1-6. https://doi.org/10.1097/MD.0000000000030026
Huo, Y., & Kassab, G. S. (2009). A scaling law of vascular volume. Biophysical Journal, 96(2), 347-353. https://doi.org/10.1016/j.bpj.2008.09.039
Huo, Y., Finet, G., Lefevre, T., Louvard, Y., Moussa, I., & Kassab, G. S. (2012). Which diameter and angle rule provides optimal flow patterns in a coronary bifurcation? Journal of Biomechanics, 45(7), 1273-1279. https://doi.org/10.1016/j.jbiomech.2012.01.033
Ingebrigtsen, T., Morgan, M. K., Faulder, K., Ingebrigtsen, L., Sparr, T., & Schirmer, H. (2004). Bifurcation geometry and the presence of cerebral artery aneurysms. journal of Neurosurgery, 101(1), 108-113. https://doi.org/10.3171/jns.2004.101.1.0108
Joh, J. H., Ahn, H. J., & Park, H. C. (2013). Reference diameters of the abdominal aorta and iliac arteries in the Korean population. Yonsei Medical Journal, 54(1), 48-54. https://doi.org/10.3349/ymj.2013.54.1.48
Kaimovitz, B., Huo, Y., Lanir, Y., & Kassab, G. S. (2008). Diameter asymmetry of porcine coronary arterial trees: structural and functional implications. American Journal of Physiology-Heart and Circulatory Physiology, 294(2), H714-H723. https://doi.org/10.1152/ajpheart.00818.2007
Kassab, G. S., & Fung, Y. C. B. (1995). The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Annals of Biomedical Engineering, 23, 13-20. https://doi.org/10.1007/BF02368296
Kimura, B. J., Russo, R. J., Bhargava, V., McDaniel, M. B., Peterson, K. L., & DeMaria, A. N. (1996). Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations. Journal of the American College of Cardiology, 27(4), 825-831. https://doi.org/10.1016/0735-1097(95)00551-X
LaBarbera, M. (1990). Principles of design of fluid transport systems in zoology. Science, 249(4972), 992-1000. https://doi.org/10.1126/science.2396104
Lammeren, G. W. V., Peeters, W., Vries, J. P. P. M. d., Kleijn, D. P. V. d., Borst, G. J. D., Pasterkamp, G., & Moll, F. L. (2011). Restenosis after carotid surgery. Stroke, 42(4), 965-971. https://doi.org/10.1161/STROKEAHA.110.603746
Lefèvre, T., Morice, M. C., Sengottuvel, G., Kokis, A., Monchi, M., Dumas, P., Garot, P., & Louvard, Y. (2005). Influence of technical strategies on the outcome of coronary bifurcation stenting. EuroIntervention, 1(1), 31-37. https://doi.org/10.4244/EIJV1I1A02
Mayrovitz, H. N. (1987). An optimal flow-radius equation for microvessel non-newtonian blood flow. Microvascular Research, 34(3), 380-384. https://doi.org/10.1016/0026-2862(87)90069-0
Morbiducci, U., Kok, A. M., Kwak, B. R., Stone, P. H., Steinman, D. A., & Wentzel, J. J. (2016). Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thrombosis and Haemostasis, 115(03), 484-492. https://doi.org/10.1160/th15-07-0597
Müller, M. D., Gregson, J., McCabe, D. J. H., Nederkoorn, P. J., Worp, H. B. v. d., Borst, G. J. d., Cleveland, T., Wolff, T., Engelter, S. T., Lyrer, P. A., Brown, M. M,  & Bonati, L. H. (2019). Stent design, restenosis and recurrent stroke after carotid artery stenting in the international carotid stenting study. Stroke, 50(11), 3013-3020. https://doi.org/10.1161/STROKEAHA.118.024076
Murasato, Y., Meno, K., Mori, T., & Tanenaka, K. (2022). Impact of coronary bifurcation angle on the pathogenesis of atherosclerosis and clinical outcome of coronary bifurcation intervention–A scoping review. Plos One, 17(8), e0273157. https://doi.org/10.1371/journal.pone.0273157
Murray, C. D. (1926a). The physiological principle of minimum work applied to the angle of branching of arteries. The Journal of General Physiology, 9(6), 835. https://doi.org/10.1085%2Fjgp.9.6.835
Murray, C. D. (1926b). The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences, 12(3), 207-214. https://doi.org/10.1073/pnas.12.3.207
Painter, P. R., Edén, P., & Bengtsson, H. U. (2006). Pulsatile blood flow, shear force, energy dissipation and Murray's Law. Theoretical Biology and Medical Modelling, 3(1), 1-10. https://doi.org/10.1186/1742-4682-3-31
Quarteroni, A., & Formaggia, L. (2004). Mathematical modelling and numerical simulation of the cardiovascular system. Handbook of Numerical Analysis12, 3-127. https://doi.org/10.1016/S1570-8659(03)12001-7
Razavi, M. S., Shirani, E., & Salimpour, M. (2014). Development of a general method for obtaining the geometry of microfluidic networks. Aip Advances, 4(1). https://doi.org/10.1063/1.4861067
Rosen, R. (2013). Optimality principles in biology. Springer. https://doi.org/10.1007/978-1-4899-6419-9
Rossitti, S., & Löfgren, J. (1993). Vascular dimensions of the cerebral arteries follow the principle of minimum work. Stroke, 24(3), 371-377. https://doi.org/10.1161/01.STR.24.3.371
San, O., & Staples, A. E. (2012). An improved model for reduced-order physiological fluid flows. Journal of Mechanics in Medicine and Biology, 12(03), 1250052. https://doi.org/10.1142/s0219519411004666
Sherman, T. F. (1981). On connecting large vessels to small. The meaning of Murray's law. The Journal of General Physiology, 78(4), 431-453. https://doi.org/10.1085/jgp.78.4.431
Tanabe, K., Hoye, A., Lemos, P. A., Aoki, J., Arampatzis, C. A., Saia, F., Lee, C. H., Degertekin, M., Hofma, S. H., & Sianos, G. (2004). Restenosis rates following bifurcation stenting with sirolimus-eluting stents for de novo narrowings. The American journal of cardiology, 94(1), 115-118. https://doi.org/10.1016/j.amjcard.2004.03.040
Uylings, H. B. M. (1977). Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bulletin of Mathematical Biology, 39(5), 509-520. https://doi.org/10.1016/S0092-8240(77)80054-2
Vlachopoulos, C., O'Rourke, M., & Nichols, W. W. (2011). McDonald's blood flow in arteries: theoretical, experimental and clinical principles. CRC press.
Vosse, F. N. V. D., & Stergiopulos, N. (2011). Pulse wave propagation in the arterial tree. Annual Review of Fluid Mechanics, 43(1), 467-499. https://doi.org/10.1146/annurev-fluid-122109-160730
West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122-126. https://doi.org/10.1126/science.276.5309.122
Womersley, J. R. (1955). Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. The Journal of Physiology, 127(3), 553. https://doi.org/10.1113%2Fjphysiol.1955.sp005276
Zamir, M., Wrigley, S., & Langille, B. (1983). Arterial bifurcations in the cardiovascular system of a rat. The Journal of General Physiology, 81(3), 325-335. https://doi.org/10.1085/jgp.81.3.325