Transient Dynamics of a Porous Sphere in a Linear Fluid

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA

2 Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA

Abstract

This article describes the unsteady translational motion of a porous sphere with slip-surface in a quiescent viscous fluid. Apart from its radius  a and density ρs , the particle is characterized by its permeability parameter γ , slip-length l and effective viscosity-ratio ϵ for interior flow. The Reynolds number for the system is assumed to be small leading to negligible convective contribution, though the transient inertia for both the liquid and the solid is comparable to viscous forces. The resulting linearized but unsteady flow-equations for both inside and outside the porous domain are solved in time-invariant frequency domain by satisfying appropriate boundary conditions. The analysis ultimately renders frequency-dependent hydrodynamic friction for the suspended body. The frictional coefficient is computed under both low and high frequency limit for different values of γ,  l and ϵ so that the findings can be compared to known results with impermeable surface. Moreover, the parametric exploration shows that the sphere acts like a no-slip body even with non-zero l if aγ ≫ 1/√ϵ . Scaling arguments from a novel boundary layer theory for flow inside porous media near interfaces explain this rather unexpected observation. Also, computed fluid resistance is incorporated in equation of motion for the particle to determine its time-dependent velocity response to a force impulse. This transient response shows wide variability with ρs, γ,  l and ϵ insinuating the significance of the presented study. Consequently, the paper concludes that slip and permeability should be viewed as crucial features of submicron particles if unexpected variability is to be explained in nano-scale phenomena like nano-fluidic heat conduction or viral transmission. Thus, the theory and findings in this paper will be immensely useful in modeling of nano-particle dynamics.

Keywords

Main Subjects


Chen, G. (2001). Ballistic-diffusive heat-conduction equations. Physical Review Letters 86, 2297–2300. https://doi.org/10.1103/PhysRevLett.86.2297
Dixon, A. G., Taskin, M. E., Nijemeisland, M., & Stitt, E. H. (2010). CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field. Industrial and Engineering Chemistry Research, 49 (19), 9012–9025. https://doi.org/10.1021/ie100298q
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters 78, 718–20. https://doi.org/10.1063/1.1341218
Fahy, J. V., & Dickey, B. F. (2010). Airway mucus function and dysfunction. New England Journal of Medicine, 363 (23), 2233–2247. https://doi.org/10.1056/nejmra0910061
Furst, E. M., & Squires, T. M. (2017). Microrheology. Oxford University Press.
Higdon, J., & Kojima, M. (1981). On the calculation of Stokes’ flow past porous particles. International Journal of Multiphase Flow, 7(6), 719–727. https://doi.org/10.1016/0301-9322(81)90041-0
Huang, H. Y., & Keh, H. J. (2015). Diffusiophoresis in suspensions of charged porous particles. Journal of Physical Chemistry B, 119(5), 2040–2050. https://doi.org/10.3390/colloids4030030
Karim, M., Kohale, S. C., Indei, T., Schieber, J. D. & Khare, R. (2012). Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations. Physical Review E, 86 (5), 051501. https://doi.org/10.1103/PhysRevE.86.051501
Karim, M., Indei, T., Schieber, J. D., & Khare, R. (2016) Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations. Physical Review E, 93(1), 012501. https://doi.org/10.1103/PhysRevE.93.012501
Keh, H. J., & Chou, J. (2004) Creeping motions of a composite sphere in a concentric spherical cavity. Chemical Engineering Science, 59(2), 407–415. https://doi.org/10.1016/j.ces.2003.10.006.
Keh, H., & Lu, Y. (2005). Creeping motions of a porous spherical shell in a concentric spherical cavity. Journal of Fluids and Structures, 20(5), 735–747. https://doi.org/10.1016/J.JFLUIDSTRUCTS.2005.03.005
Kincaid, J. M., & Cohen, E. G. D. (2002). Nano- and pico-scale transport phenomena in fluids. Journal of Statistical Physics, 109, 361–71. https://ui.adsabs.harvard.edu/link_gateway/2002JSP...109..361K/doi:10.1023/A:1020433725023
Looker, J. R., & Carnie, S. L. (2004). The hydrodynamics of an oscillating porous sphere. Physics of Fluids, 16(1), 62–72. https://ui.adsabs.harvard.edu/link_gateway/2004PhFl...16...62L/doi:10.1063/1.1630051
Marconnet, A. M., Panzer, M. A., & Goodson, K. E. (2013). Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Reviews of Modern Physics, 85,1295–1326. https://doi.org/10.1103/RevModPhys.85.1295
Masliyah, J. H., Neale, G., Malysa, K., Theodorus, G. M. & V. D. Ven (1987). Creeping flow over a composite sphere: solid core with porous shell. Chemical Engineering Science, 42(2), 245–253. https://doi.org/10.1016/0009-2509(87)85054-6
Mason, T. G. (2000). Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheologica Acta, 39(4), 371–378. https://doi.org/10.1007/s003970000094
Mason, T. G., & Weitz, D. A. (1995). Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters, 74(7), 1250–1253. https://doi.org/10.1103/physrevlett.74.1250
Mundargi, R. C., M. G. Potroz, S. Park, H. Shirahama, J. H. Lee, J. Seo, & N. J. Cho (2016). Natural sunflower pollen as a drug delivery vehicle. Small, 12(9), 1167–1173. https://doi.org/10.1002/smll.201500860
Navardi, S., & Bhattacharya, S. (2013) General methodology to evaluate two-particle hydrodynamic friction inside cylinder-bound viscous fluid. Computers and Fluids, 76,149–169. https://doi.org/10.1016/j.compfluid.2013.01.004
Navardi, S., Bhattacharya, S., & Wu, H. (2015) Stokesian simulation of two unequal spheres in a pressure-driven flow through a cylinder. Computers and Fluids, 121, 145–163. http://dx.doi.org/10.1016/j.compfluid.2015.07.027
Neale, G., Epstein, N., & Nader, W. (1973). Creeping flow relative to permeable spheres. Chemical Engineering Science, 28(10), 1865–1874. https://ui.adsabs.harvard.edu/link_gateway/1973ChEnS..28.1865N/doi:10.1016/0009-2509(73)85070-5
Nourian, P., Islam, R., & Khare, R. (2021). Implementation of active probe rheology simulation technique for determining the viscoelastic moduli of soft matter. Journal of Rheology, 65(4), 617–632. https://doi.org/10.1122/8.0000071
Prakash, J., & Raja Sekhar, G. (2012). Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model. Meccanica, 47(5), 1079–1095. http://dx.doi.org/10.1007/s11012-011-9494-1
Prakash, J., & Sekhar, G. (2017). Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity. Meccanica, 52(1), 91–105. http://dx.doi.org/10.1007/s11012-016-0391-5
Premlata, A. R., & Wei, H. H. (2019). The basset problem with dynamic slip: slip-induced memory effect and slip-stick transition. Journal of Fluid Mechanics, 866, 431–449. http://dx.doi.org/10.1017/jfm.2019.57
Schuster, B. S., Suk, J. S., Woodworth, G. F., J. Hanes (2013). Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials, 34(13), 3439–46. https://doi.org/10.1016/j.biomaterials.2013.01.064
Solsvik, J., & Jakobsen, H. A. (2011). Modeling of multicomponent mass diffusion in porous spherical pellets: Application to steam methane reforming and methanol synthesis. Chemical Engineering Science, 66(9), 1986–2000. http://dx.doi.org/10.1016/j.ces.2011.01.060
Tsai, S. C., & Lee, E. (2019). Diffusiophoresis of a highly charged porous particle induced by diffusion potential. Langmuir, 35(8), 3143–3155. https://doi.org/10.1021/acs.langmuir.8b04146
Vahedi, A., & Gorczyca, B. (2012). Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions. Water Res, 46(13), 4188–94. https://doi.org/10.1016/j.watres.2012.04.031
Vainshtein, P., & Shapiro, M. (2009). Forces on a porous particle in an oscillating flow. Journal of Colloid and Interface Science, 330(1), 149–155. http://dx.doi.org/10.1016/j.jcis.2008.10.050
Wei, Y. K., & Keh, H. J. (2004). Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. Journal of Colloid and Interface Science, 269(1), 240–250. https://doi.org/10.1016/j.jcis.2003.08.054
Yao, X., Ng, C. H., Teo, J. R. A., Marcos, & Wong, T. N. (2019). Slow viscous flow of two porous spherical particles translating along the axis of a cylinder. Journal of Fluid Mechanics, 861, 643-678. https://doi.org/10.1017/jfm.2018.918
Yu, Q., & Kaloni, P. (1988). A Cartesian-tensor solution of the Brinkman equation. Journal of engineering mathematics, 22(2), 177–188. https://doi.org/10.1007/BF02383599