Dixon, A. G., Taskin, M. E., Nijemeisland, M., & Stitt, E. H. (2010). CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field.
Industrial and Engineering Chemistry Research, 49 (19), 9012–9025.
https://doi.org/10.1021/ie100298q
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.
Applied Physics Letters 78, 718–20.
https://doi.org/10.1063/1.1341218
Furst, E. M., & Squires, T. M. (2017). Microrheology. Oxford University Press.
Karim, M., Kohale, S. C., Indei, T., Schieber, J. D. & Khare, R. (2012). Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations.
Physical Review E, 86 (5), 051501.
https://doi.org/10.1103/PhysRevE.86.051501
Karim, M., Indei, T., Schieber, J. D., & Khare, R. (2016) Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations.
Physical Review E,
93(1), 012501.
https://doi.org/10.1103/PhysRevE.93.012501
Marconnet, A. M., Panzer, M. A., & Goodson, K. E. (2013). Thermal conduction phenomena in carbon nanotubes and related nanostructured materials.
Reviews of Modern Physics, 85,1295–1326.
https://doi.org/10.1103/RevModPhys.85.1295
Masliyah, J. H., Neale, G., Malysa, K., Theodorus, G. M. & V. D. Ven (1987). Creeping flow over a composite sphere: solid core with porous shell.
Chemical Engineering Science, 42(2), 245–253.
https://doi.org/10.1016/0009-2509(87)85054-6
Mason, T. G. (2000). Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation.
Rheologica Acta, 39(4), 371–378.
https://doi.org/10.1007/s003970000094
Mundargi, R. C., M. G. Potroz, S. Park, H. Shirahama, J. H. Lee, J. Seo, & N. J. Cho (2016). Natural sunflower pollen as a drug delivery vehicle.
Small,
12(9), 1167–1173.
https://doi.org/10.1002/smll.201500860
Nourian, P., Islam, R., & Khare, R. (2021). Implementation of active probe rheology simulation technique for determining the viscoelastic moduli of soft matter.
Journal of Rheology,
65(4), 617–632.
https://doi.org/10.1122/8.0000071
Premlata, A. R., & Wei, H. H. (2019). The basset problem with dynamic slip: slip-induced memory effect and slip-stick transition.
Journal of Fluid Mechanics, 866, 431–449.
http://dx.doi.org/10.1017/jfm.2019.57
Solsvik, J., & Jakobsen, H. A. (2011). Modeling of multicomponent mass diffusion in porous spherical pellets: Application to steam methane reforming and methanol synthesis.
Chemical Engineering Science, 66(9), 1986–2000.
http://dx.doi.org/10.1016/j.ces.2011.01.060
Wei, Y. K., & Keh, H. J. (2004). Diffusiophoretic mobility of charged porous spheres in electrolyte gradients.
Journal of Colloid and Interface Science,
269(1), 240–250.
https://doi.org/10.1016/j.jcis.2003.08.054
Yao, X., Ng, C. H., Teo, J. R. A., Marcos, & Wong, T. N. (2019). Slow viscous flow of two porous spherical particles translating along the axis of a cylinder.
Journal of Fluid Mechanics,
861, 643-678.
https://doi.org/10.1017/jfm.2018.918