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ABSTRACT 

It is important to control turbulence in industrial processes. Past experimental 

and numerical researches have shown that a turbulent puff in pipe flow can be 

removed or delayed by flattening the profile of the upstream velocity because a 

flattened velocity profile causes the point of inflection on it to collapse. The 

energy gradient theory has been developed to study turbulent transition, and the 

relevant studies have shown that turbulence arises due to the generation of 

singularities in the flow field. In pressure-driven flows like the pipe flow, the 

point of inflection on the velocity profile leads to the appearance of a singular 

point in the unsteady Navier–Stokes equation. In this study, the energy gradient 

theory is used to demonstrate why the point of inflection on the profile of 

velocity of pipe flow is the critical point for generating turbulence. Then, it is 

shown how flattening the velocity profile leads to the elimination of the point of 

inflection on the velocity profile of pipe flows to delay turbulent transition. It is 

also clarified why this technique is not effective at higher Reynolds number 

because the flattened velocity profile violates the criterion for flow stability 

relating to transition to turbulence. 
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1. INTRODUCTION 

Two types of states of flow have been observed in 

nature as well as in engineering applications, i.e., laminar 

and turbulent flows (Schlichting & Gersten, 2017; Dou, 

2022b). Unlike laminar flows, turbulent flows can 

produce a large drag force and consume more energy 

while transporting the fluid. Laminar flows are thus 

generally preferred in the design of airplanes, cars, and 

ships as well as in the transportation of various fluids 

through pipelines. One of the aims to study turbulence is 

to control the states of flow in military and industrial 

applications through various means. Developing a 

method to control the flow is thus important for reducing 

the drag force. 

In this study, we use the energy gradient theory to 

demonstrate why the point of inflection on the profile of 

velocity of pipe flow is the critical point for generating 

turbulence. Further, we show that flattening the velocity 

profile leads to the elimination of the point of inflection, 

and thus enhances the stability of pipe flow to delay the 

transition to turbulence. 

Hof et al. (2010a) experimentally and numerically 

examined whether a turbulent puff in a pipe can be 

removed or delayed by flattening the profile of the 

upstream velocity at a low Reynolds number. Their 

results showed that the point of inflection on the velocity 

profile is the essence of a turbulent spot or puff in pipe 

flow, and removing it causes the puff to collapse. Hof et 

al. (2010a) used a second puff to flatten the velocity 

profile upstream of the original puff (to be removed), and 

were able to successfully manipulate the flow. The point 

of inflection at the rear of the original puff (downstream 

of the second puff) was delayed as a result. This method 

for controlling the generation of turbulence offers 

promise for drag reduction in engineering and industrial 

applications. 

Hof et al. (2010a) argued that the transport of the 

streamwise vorticity, which is given by the cross-

sectional average of the product of the magnitude of the 

axial vorticity and the relative motion with respect to the 

mean velocity, ( )z zu U − , dominates in terms of 

sustaining the point of inflection, and this in turn leads to 

the instability that leads to the regeneration of vorticity. 

Here, z , zu , and U  in the above represents the axial 

vorticity, axial velocity, and the average axial velocity, 
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respectively. The results of their simulations showed that 

the strongest point of inflection coincides with the 

location of the vorticity production, at which the 

turbulent kinetic energy reaches its maximum after the 

point of inflection, thus indicating that turbulence had 

indeed been sustained by the instability of the point of 

inflection. This leads to the idea of delaying turbulence 

by removing the point of inflection.  

Inflectional instability derived from inviscid flows 

(Rayleigh, 1880) has been used in past work to explain 

the transition/generation of turbulence in various flows 

(Kline et al., 1967; Robinson, 1991; Panton, 2001). 

However, this interpretation is based on the analysis of 

the Euler equation of an inviscid fluid, whereas the flow 

through a pipe is viscous flow that can be described only 

by using the Navier–Stokes equation.  

Dou (2006, 2011, 2021, 2022a, b), Dou and Khoo 

(2009, 2010, 2011), and Dou et al. (2008) proposed the 

energy gradient theory to analyze flow stability and 

turbulent transition. For pressure-driven flow at a high 

Reynolds number, it is found that the inflection point on 

the velocity profile can be induced when a flow is 

subjected a disturbance. It is proved that the inflection 

point on the velocity profile is a singular point and it may 

results in flow instability and turbulent transition at 

sufficient large disturbance. 

Dou (2021, 2022a, b) proved that the necessary and 

sufficient condition for turbulence generation/ turbulence 

transition is the appearance of singular point (velocity 

discontinuity) of the Navier-Stokes equation in flow 

field. The theory has obtained agreement with the 

available experimental results. For pressure-driven flows, 

this singularity corresponds to the position in the flow 

field where the Laplace operator is zero. 

For a plane Poiseuille flow, the Laplace operator is 

given by 

2 2 2
2

2 2 2

u u u
u

x y z

  
 = + +

  
. 

If the flow is fully developed and uniform along the 

spanwise direction, 
2 2/ 0u x  =  and 

2 2/ 0u z  = . 

Thus, the point at which the Laplace operator is zero 

corresponds to the point of inflection on the velocity 

profile, 2 2/ 0u y  = . If the flow is not uniform along 

the spanwise direction, because the streamwise velocity 

is of the main flow, the last two terms of the Laplace 

operator have very small values, and the point where the 

Laplace operator is zero is located close to the point of 

inflection on the velocity profile. 

The Laplace operator in case of the pipe Poiseuille 

flow is 

2 2 2
2

2 2 2 2

1 u u u u
u

r r r r z

   
 = + + +

   
. 

If the flow is fully developed and axisymmetric, 
2 2/ 0u z  = , 2 2 2/ ( ) 0u r   = . Because / ( )u r r   is very 

small near the point of inflection on the velocity profile, 

the point at which the Laplace operator is zero is located 

close to the point of inflection on the velocity profile, 

2 2/ 0u r  = . If the flow is not axisymmetric, the last 

two terms of the Laplace operator are very small because 

the streamwise velocity is the main flow, and the point at 

which the Laplace operator is zero is close to the point of 

inflection on the velocity profile of the flow. Therefore, 

if there is a point of inflection on the velocity profile in 

case of circular pipe flow, singularity inevitably appears 

near the point of inflection. 

According to the energy gradient theory (Dou, 2006, 

2011, 2021, 2022a, b), when the velocity profile of the 

flow in a pipe is flattened, the maximum of the energy 

gradient function K decreases, which enhances the 

stability of flow. The appearance of the point of 

inflection is delayed, because of which the turbulent 

transition is extended to higher Reynolds number (Re). 

Therefore, the transition to turbulence can be controlled 

by manipulating the magnitude of the energy gradient 

function K. 

In this study, we use the energy gradient theory to 

characterize the behavior of the flow field through a pipe. 

We quantitatively describe the mechanism to stabilize the 

flow by flattening its velocity profile. The flow is 

assumed to be axisymmetric laminar flow that is solved 

analytically by using the Navier–Stokes equation with a 

varying control parameter to flatten the velocity profile. 

The results show that flattening the velocity profile of the 

flow reduces the maximum of the energy gradient 

function and therefore stabilizes the flow. The occurrence 

of the point of inflection on the velocity profile is 

delayed, and the critical Reynolds number for turbulent 

transition increases. Following this, we clarify the 

physical mechanism of the failure of the technique used 

to control turbulence at higher values of Re (Re>~3000). 

The motivation of our research here is to offer a plausible 

account of this phenomenon. Finally, our work here 

based on the energy gradient theory supports the idea in 

Hof et al. (2010a) that removing the point of inflection 

on the velocity profile can delay the transition to 

turbulence in pipe flows within a certain range of the 

Reynolds number. 

2. ENERGY GRADIENT THEORY APPLIED TO 

PIPE FLOW 

Dou and co-authors (Dou, 2006; Dou et al., 2008; 

Dou, 2011, 2021) proposed an energy gradient theory to 

clarify the mechanism of transition of wall-bounded 

flows from laminar flow to turbulence. According to this 

approach, the interaction between the disturbance and the 

base flow leads to variations in the total mechanical 

energy of the disturbed particles of fluid and the 

evolution of the average velocity profile. The relative 

magnitude of the total mechanical energy gained by the 

particles and the loss of energy owing to viscous friction 

in each cycle of disturbance dominates the amplification 

or decay of the disturbance. For a given base flow, the 

criterion of stability is as follows (Dou, 2011), 

'mv
K Const

u
      (1) 

and  
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/

/

E n
K

H s

 
=
       

(2) 

where K is a dimensionless field variable (function) that 

is expressed as the ratio of the transversal gradient of the 

total mechanical energy to the rate of energy loss along 

the streamline, and can be calculated from the Navier–

Stokes equation. In Eq. (2), 21

2
E p V= +  is the total 

mechanical energy per unit volume of fluid when the 

gravitational force is neglected, s is along the streamwise 

direction, while n is along the direction normal to the 

streamline. H is the loss of the total mechanical energy 

per unit volume of fluid along the streamline over a finite 

length, ρ is the density of the fluid, u is the streamwise 

velocity of the main flow, and 'mv  is the amplitude of 

disturbance in the velocity along the direction normal to 

the wall. 

The energy gradient function K is a variable of space 

and time, and is actually a local Reynolds number (Dou, 

2006, 2021, 2022a, b). Its magnitude is important but its 

sign does not matter.  

For pressure-driven flows, the rate of the energy 

loss (total mechanical energy) along the streamline is 

equal to the reduction in the total mechanical energy 

along the streamline. Then, Eq. (2) can be rewritten as 

(Dou, 2006), 

/

/

E n
K

E s

 
=
 

.     (3) 

where /E s   is the reduction in the total mechanical 

energy along the streamline over a finite length. 

The magnitude of K is proportional to the global 

Reynolds number ( Re ( )U 2R = ) for a given geometry 

for all types of flows (Dou, 2006, 2011). Thus, the 

criterion given in Eq. (1) can be rewritten as (Dou, 2011): 

'
Re mv

Const
u

 .      (4) 

For a given geometry of flow, U is the characteristic 

velocity (mean velocity here) that is generally a function 

of u. Thus, Eq. (4) can be rewritten as (Dou, 2011): 

'
Re mv

Const
U

 or 1(Re)~)
'

( −
c

m

U

v .                 (5) 

This scaling is in excellent agreement with the 

results of experiments on pipe flow with a normally 

injected disturbance (Hof et al., 2003; Peixinho & Mullin, 

2007). The basic flow is assumed to be maintained as 

parallel flow during modeling once the perturbation has 

been input, and is unaffected by the disturbance (Dou, 

2011). Therefore, Eq. (4) or Eq. (5) is applicable only to 

injection-induced disturbance, and is not suitable for the 

push–pull disturbance, considered by Peixinho and 

Mullin (2007), or other types of disturbances (Lundbladh 

et al., 1994; Chapman, 2002). In case of push–pull 

disturbance, the basic flow is locally non-parallel. More 

importantly, the push–pull disturbance is not a free 

perturbation, but involves the input of external work. In 

this case, the boundary condition of the system changes. 

The energy gradient function K is a variable of the 

flow field. For a given flow field, there is a maximum of 

K at which the flow is the most unstable. Thus, the 

maximum of K and the point at which it occurs can be 

considered to be indications of the most dangerous 

position for the generation of turbulence. 

According to the criterion of stability given in Eq. 

(1), ( )' /mK v u Const , non-linear interactions between 

the disturbance and the base flow (where both K and 

( )' /mv u  vary with time) lead the flow to the critical 

condition of turbulent transition. The streamwise velocity 

oscillates intensely at the most dangerous position for the 

generation of turbulence in the critical condition, and the 

mean flow exhibits a point of inflection under the 

ensuing disturbance. The contribution of the base flow to 

this instability is the magnitude of the function K. 

Equation (1) shows that the flow is expected to be more 

unstable at locations where the magnitude of K is larger 

under the same level of normalized perturbation ( )' /mv u

. The amplitude and the position of the initial oscillation 

should be associated with the maximum of K in the flow 

domain, (Kmax), for a given uniform disturbance. If the 

disturbance is not uniform, this position may slightly 

deviate from the location of Kmax.  

Equation (1) expresses the critical condition for the 

transition to turbulence under variations of the energy 

gradient function and the dimensionless amplitude of the 

disturbance. Under the critical condition, the maximum 

of K is inversely proportional to the dimensionless 

amplitude of disturbance. 

Figure 1 shows the average velocity profiles of 

laminar flow, transitional flow, and turbulent flow 

through a pipe. The velocity distribution of a laminar 

flow through a pipe can be expressed as (Dou, 2006, 

2011): 

2

0 2
1

r
u u

R

 
= − 

 
     (6) 

The energy gradient function K of pipe flow can be 

obtained through the Navier–Stokes equation and Eq. (3): 

2

2

1
/

u u u
K u

r r r r
 

   
= + 

   
.   (7) 

 

 

(a)                            (b)                             (c) 

Fig. 1 Velocity profiles during the transition from 

laminar flow to turbulence in case of Poiseuille pipe 

flow, as observed in experiments and simulations. (a) 

Laminar flow. (b) Transitional flow. (c) Turbulence 

 



C. Q. Zhou et al. /JAFM, Vol. 17, No. 11, pp. 2401-2410, 2024.  

 

2404 

Equation (7) is for laminar flow or transitional flow 

through a pipe since the denominator in Eq. (7) 

represents the drop of the total mechanical energy along 

a streamline. As the flow is subjected to disturbance, it 

becomes unsteady, and may even be non-axisymmetric. 

At some point, for example, at the point of inflection, the 

gradient of the total mechanical energy, /E s  , along 

the streamline may become zero, and this point is a 

singular point (Dou, 2021). The value of the energy 

gradient function K is infinite at this point, and the 

capability of amplification in the disturbance is very 

large. This is the location at which a turbulent “burst” 

occurs, which leads to a peak pressure distribution at the 

said location.  

Dou et al. (Dou, 2006, 2011, 2022b) have shown that 

the critical value of K for plane Poiseuille flow and pipe 

Poiseuille flow, determined from experimental data, is 

about 385. If K is lower than this value, turbulence 

cannot be generated regardless of the level of 

disturbance. The most unstable position for plane 

Poiseuille flow and pipe Poiseuille flow occurs at 

0.58y h = 
 
and 0.58r R = , respectively, and this has 

been confirmed through experiments. Nishioka et al. 

(1975) used ribbon-induced disturbances in plane 

Poiseuille flow and showed that the average velocity 

profile exhibited intense oscillations (inflections) in the 

range of y/h=  0.50~0.62. Nishi et al. (2008) used 

normal injection as disturbance in pipe Poiseuille flow, 

and showed that the average velocity profile was 

subjected to intense oscillations (inflections) in the range 

of r/R=0.53~0.73 during the occurrence of transition in 

flow. These experimentally obtained locations have been 

shown to agree with those predicted by the energy 

gradient theory (0.58). 

The energy gradient theory has also been shown to 

be valid for plane Couette flow (Dou & Khoo, 2011), 

Taylor–Couette flow (Dou et al., 2008), and boundary 

layer flow (Dou & Khoo, 2009), and has exhibited 

excellent agreement with the relevant experimental data 

provided in the literature.  

The formation of streamwise vortices can be 

explained as follows: A disturbance with a finite 

amplitude causes the velocity profile to oscillate locally 

according to Eq. (1). The extent of this oscillation varies 

along the radial direction, and is the largest at about 

0.58r R = . The amplification in the disturbance at this 

location then causes the velocity profile to assume an 

inflectional feature. The velocity profile becomes 

unstable if Re is sufficiently large, while the pressure at 

this location decreases owing to the large magnitude of 

the disturbance-induced velocity because the mean 

pressure is constant along the radius. This low pressure, 

at about 0.58r R = , induces a secondary flow on the 

cross-section that forms streamwise vortices. If the initial 

disturbance is uniform along the radial direction, the 

secondary flow is centered at 0.58r R = . If the initial 

disturbance is non-uniform along the radial direction, the 

location of the secondary flow may deviate from 

0.58r R = . The secondary vortices on the cross-section 

have been clearly identified in experiments and 

simulations (Hof et al., 2010a), and sustain the presence 

of the point of inflection. The low pressure at the center 

of these vortices helps maintain the secondary vortices at 

a constant strength. 

Dou (2021) discovered that there exists a singularity 

in the Navier–Stokes equation in case of the transition of 

channel flow, which explains the mechanism of transition 

from smooth laminar flow to turbulence. In case of 

channel flow, the singular point is located at the point of 

inflection on the velocity profile, while it is located near 

the point of inflection in case of pipe flow. The velocity 

becomes discontinuous at the singular point and a 

negative spike is formed, while the peak pressure occurs 

due to the conservation of the total mechanical energy. 

However, the discontinuity in velocity and the peak in 

pressure occur instantaneously during the disturbance.  

Dou (2022a) analyzed the Poisson's equation to 

further confirm the above conclusions. The Navier–

Stokes equation was written as a form of Poisson's 

equation to this end. The results showed that the position 

at which the Laplace operator is zero is the singular point 

of the Poisson equation, and corresponds to the location 

at which the viscous term vanishes, close to the point of 

inflection, in case of pipe flow.  

We have mentioned above that Hof et al. (2010a) 

argued that the transport of the streamwise vorticity, 

given by the cross-sectional average of the product of the 

magnitude of the axial vorticity and the relative motion 

with respect to the mean velocity, ( )z zu U − , 

governs the maintenance of the point of inflection, and in 

turn causes the instability that regenerates vorticity. In 

fact, the magnitude of ( )z zu U −  needs to reach its 

maximum at the singular point predicted by the energy 

gradient theory, at which the fluctuation in velocity is the 

largest. Therefore, the energy gradient theory shares the 

idea which is similar to that proposed by Hof et al. 

(2010a).  

3.  CONTROLLING TRANSITION BY 

MANIPULATING KMAX 

Past work suggests that the transition to turbulence 

can be controlled by manipulating the function K (Dou, 

2006; Dou & Khoo, 2010; Dou, 2022b). Flattening the 

velocity profile is one means to this end. We show below 

that a flattened velocity profile reduces the value of Kmax 

in the domain and hence makes the flow more stable. 

Under the same conditions of disturbance, the transition 

to turbulence can then be extended or delayed to larger 

value of Re. 

The steady Navier–Stokes equation for laminar pipe 

flow can be reduced as follows: 

20 p u F= − +  +
     (8) 

where p  is the pressure gradient and F is the body 

force. As is well known, the solution to the above 

equation is a parabola when the body force is neglected 

(Hagen–Poiseuille flow).  
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We can rewrite Eq. (8) as, 

2( )p F u − =  .                                 (9) 

If F is uniform along the radius, ( )p F Const − = , 

where adding a body force is equivalent to reducing the 

pressure gradient, the velocity profile maintains a 

parabolic shape (case 1). 

If F is non-uniform but smooth along the radius, and 

its maximum occurs at the centerline, this minimizes the 

value of ( )p F − at the centerline. In this case, F causes 

the velocity profile to flatten (case 2).  

If F is non-uniform but smooth along the radius, and 

its minimum value occurs at the centerline, this 

maximizes the value of ( )p F −
 
at the centerline. In this 

case, F causes the velocity profile to become stretched 

(case 3).  

In case of the flattening of the velocity profile (case 

(2)), the solution to the Navier–Stokes equation for pipe 

flow under a pressure gradient and a certain volumetric 

force can be expressed by a series of even power 

functions of the ratio of the radius: 
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0
R

r

R

r

R

r

R
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uu 

(10) 

where  , 
1 , 

2 …, are constant parameters. In case of a 

small amount of flattening of the velocity profile, only 

the leading terms are sufficient, but higher-order terms 

are required for a large amount of flattening of the 

velocity profile.  

When the body force is not large, the flattening of 

the velocity profile is limited to within a certain range of 

F. Under such conditions, Eq. (10) can be rewritten as 

follows for convenience: 

2 4

0 02 4
1 1

r r
u u u

R R


   
= − + −   

   
               (11) 

where 0 =  corresponds to a parabolic profile. The 

velocity distributions under various values of  are 

shown in Fig. 2. The average velocity profile is 

determined here under a constant rate of flow and various 

values of  . It is clear that the velocity profile is 

gradually flattened with increasing values of  .  

Hof et al. (2010b) simulated the laminar flow with a 

flattened velocity profile and input a volumetric force to 

the system by using the full Navier–Stokes equation. 

They used a parameter expressing the reduction in 

velocity at the centerline, 0.15 = , for the flattening of 

the velocity profile. This means that the maximum 

velocity at the centerline had decreased by 15%. 

According to Eq. (11), if the maximum velocity is 

reduced by 15%, 1.1538 = such that the average 

velocity (or flow rate) remains unchanged. This value 

can be obtained as follows. 

 

Fig. 2 Velocity profiles for various values of  and a 

constant average velocity U. Here  = 0 corresponds 

to a parabolic profile ( /u U =
0

2 ) 

 

The average velocity of the flattened velocity profile 

in Eq. (11) is 
0

1 2
( )
2 3

U u = + , while the velocity at the 

centerline is 
0 0u u+ . The average velocity of pipe 

Poiseuille (parabolic) flow is 0

1

2
U u= , while the 

velocity at the centerline is 
0u  in this case. Thus, for the 

maximum velocity at the centerline to decrease by 15%, 

we have 

0 0 0(1 0.15) Pu u u+ = − .                (12) 

For the average velocity to remain unchanged after the 

velocity profile has been flattened, we have, 

0

1 2 1
( )
2 3 2

oPu u+ = ,                (13) 

where 
oPu  denotes the velocity of the Poiseuille 

(parabolic) profile at the centerline in case of pipe flow. 

We obtain 1.1538 =  from the solution of Eqs. (12) and 

(13). 

A comparison between the results of Eq. (11) for a 

15% reduction in the maximum velocity and those of the 

simulation by Hof et al.(2010a) is shown in Fig. 3. It is 

clear from it that the two profiles are nearly identical. 

Thus, the velocity profile represented by Eq. (11) can be 

considered to be a solution to the Navier–Stokes equation 

for 1.1538 = .  

By introducing Eq. (11) into Eq. (3), we obtain, 

2 2 4

2 2 4

2

2

1 2 1 1
1

Re
4 1 2

1 4
2 3

    
+ − + −    

    
=

  
+ +  

  

r r r r

R R R R
K

r

R

 

 

,              (14) 
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Fig. 3 Comparison of velocity profiles obtained from 

Eq. (8) with those in the numerical simulations by Hof 

et al. (2010b). For all cases, the average velocity U was 

kept unchanged. The case of  = 0 corresponds to the 

parabolic profile of velocity ( /u U =
0

2 ). The dotted–

dashed line is taken from Hof et al. (2010b) for 

.= 0 15 , i.e., the maximum velocity decreased by 

15%. For the same reduction in the maximum 

velocity, . = 1 1538  from Eq. (8) 

 

where the Reynolds number is Re (2 )U R = .  

The velocity distribution in pipe flow can be 

modified by adjusting the parameter  . With increasing 

values of  , the velocity distribution is gradually 

flattened. Thus, the maximum of the energy gradient 

function K is reduced according to Eq. (14), and the 

stability of pipe flow can be enhanced by adjusting  .  

Equation (14) gives a general formulation to predict 
flow stability, and is an exact formulation to predict the 

onset of the process of transition from laminar flow to 

turbulence. When the value of the denominator of K in 

Eq. (14) is close to zero during the development of 

transient flow (meaning singularity occurrence), this 

represents the beginning of the generation of turbulence. 

4.  RESULTS OF CALCULATIONS WITH 

VARYINGLY FLATTENED VELOCITY 

PROFILES 

Figure 4 shows the distribution of the function K 

along the radius of the pipe at various values of   for 

Re=2000. It is evident that the value of Kmax decreases 

with increasing value of  . The location of Kmax occurrs 

at around r/R=0.56~0.60, and does not vary much with 
. These observations suggest that an increase in 
enhances the stability of laminar flow, and the location of 

the most unstable position remained almost unchanged at 

about 0.58r R = . This is why the flow is stabilized and 

turbulent transition is delayed when the flow has been 

flattened (  increased).  

 

Fig. 4 Distribution of K along the radial direction for 

various values of  (based on Eq. (8)) 

 

 

Fig. 5 Maximum of K versus   for pipe flow. 

According to the energy gradient theory, turbulence 

can occur only at maxK  385  for parallel flows (Dou, 

2006, 2011). If maxK  is reduced, the transition to 

turbulence is delayed. The drag ratio is defined as 

/D D =0
, where D  expresses the drag for the 

flattened velocity profile of laminar flow, and D =0
 

denotes the original laminar parabolic profile. The 

shaded area is the zone that can be modified to 

laminar flow by flattening the velocity profile, which 

depends on the magnitudes of Re and   

 

Figure 5 shows the maximum of K versus the value 

of   at different Reynolds numbers. Kmax increases with 

increasing value of Re. For Re=4000, the value of Kmax is 

always larger than 500, up to a large value of  =2, and it 

tends toward a value of 408 as   approaches infinity. 

For Re=3000 and  =1.0, Kmax is 413, which is larger  
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Fig. 6 Second derivatives of the streamwise velocity 

versus the radial direction at various values of   
while keeping the average velocity U unchanged ( ''u  

is normalized by 
2/U R ) 

 

than the critical value of Kc=385 for turbulent transition 

in the original pipe flow, and leads to turbulence. At this 

Reynolds number, even using  =2.0 yields a value of 
Kmax of 368, which is near the critical value of 385. Thus, 

it becomes difficult to delay the turbulent transition by 

flattening the velocity profile at Re=3000, even with a 

large value of  =2. Hof et al. (2010a, b) found that 

flattening the velocity profile to delay turbulence works 

well for sufficiently small values of Re ( Re 2000 ), but 

fails when Re is larger ( Re 2500 ). The variation in 

Kmax with Re as shown depicted in Fig. 5 aptly explains 

these phenomena, which are further discussed below.  

Figure 6 shows the distributions of the second 

derivative of the velocity u with respect to the radius 

(i.e., ''u ) for various values of  . It is seen that ''u  

becomes more non-uniform as the velocity is 

increasingly flattened: ''u decreases at the centerline but 

increases near the wall. For  =0.3, the value of ''u  at 

the wall doubles. This means that the drag of the laminar 

flow has significantly increased. At larger values of  , 

the value of ''u  at the wall increases further. This means 

that the drag of the laminar flow significantly increases at 

large values of   in Eq. (11). 

The dimensionless drag on the wall of the pipe can 

be calculated by the following equation: 

2

2

2

1 du d u

r dr dr
D

U

R





 
+ 

 
= .               (15) 

By using Eq. (11), Eq. (15) can be rewritten as,  

2

2
4 1 4

1 2

2 3

r

R
D





 
+ 

 
=

 
+ 

 

.                (16) 

Table 1 Variations in the dimensionless drag force on 

the flattened velocity profile of laminar flow versus 

values of   

  Kmax（Re=3000） D  0/D D =  

0 577 8 1 

0.3 495 12 1.5 

0.8 429 16.2 2.1 

1.3 394 18.1 2.3 

1.5 385 18.7 2.35 

2.0 367 19.6 2.45 

2.5 356 20.3 2.54 

3.0 347 20.8 2.60 

 

On the wall, r=R, we then have, 

( )4 1 4

1 2

2 3

D




+
=
 

+ 
 

.                 (17) 

Table 1 provides a comparison between the drag 

force of the modified (flattened) velocity profile of 

laminar flow with that of its original (parabolic) velocity 

profile. For Re=3000, the flow transitioned to turbulence 

(because Kmax>385), even when we used a large value of 

  (say at 1.5) to flatten its velocity profile. At  =1.5, 

the drag increased to 2.33 times that of the parabolic 

laminar flow. For values of Re larger than 3,000, the 

scenario is worsened, and there is little likelihood of 

delaying turbulence and reducing the drag by using the 

technique proposed by Hof et al. (2010a, b). Therefore, 

this technique (Hof et al., 2010a) is valid only at small 

Reynolds numbers (i.e., about 2,000 or slightly larger), 

and is not applicable to large values of Re (Re>~3000). 

Strictly speaking, Hof et al. found that this technique is 

valid only for Re<2500 (Hof et al., 2010a, b). 

Equation (15) shows that the drag ratio 0/D D =  is 

dependent only on  , and is unrelated to Re. D  is the 

drag of the modified (flattened) velocity profile of 

laminar flow while 
0D =  is that of the original 

(parabolic) velocity profile of laminar flow in a pipe. Fig. 

5 shows that if 0/D D = is increased for the flattened 

velocity profile in pipe flow to 2.14, the required value of 
  is 0.5. To obtain Kmax=385 and ensure laminar flow, 

the maximum allowable Re is 2,500. At value of Re 

larger than 2,500, a larger value of   needs to be 

applied. As shown in Table 1, however, a larger  leads 

to a larger drag associated with laminar flow. The shaded 

area in Fig. 5 represents the zone that can be modified to 

laminar flow by flattening the velocity profile via the 

energy gradient theory (Dou, 2011), where this depends 

on the magnitudes of Re and  .  

Table 2 shows the values of   required to delay the 

transition to turbulence and the locations of Kmax at 

various values of Re. It is clear that the value of   

required to delay the transition to turbulence increased 

with Re. For Re=2800, the required value of   was 

larger than one, while it was larger than 1.5 for Re=3000. 

For even larger values of Re ( Re 4000 ), the required  
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Table 2 Values of   required to delay the transition 

to turbulence, and the locations of the Kmax at various 

values of Re 

Re   max( / )Kr R  

2000 0 0.58 

2200 0.162 0.56 

2500 0.49 0.56 

2800 0.985 0.56 

3000 1.5 0.58 

3500 4.95 0.62 

3700 13.0 0.64 

4000 N/A 0.66 

 

values of   became impossibly large such that reducing 

the value of Kmax to below 385 became impossible (it 
tended asymptotically to 401 with infinite values of  at 

Re=4000). This means that it is very difficult to delay the 

transition to turbulence at larger values of Re by 

flattening the velocity profile of flow. Table 2 also shows 

that Kmax was located at around r/R=0.56~0.66 for 

Re=2000~4000. At larger values of Re, its location 

moved slightly toward the wall of the pipe.  

Experiments on pipe flows (Fargie & Martin, 1971) 

have shown that the shape of the velocity profile is 

closely related to the magnitude of the drag force. 

Therefore, the variation in drag should be carefully 

considered when using the flattening technique.  

In addition, the flow in a pipe system may be subject 

to transient behavior due to variations in the pressure. 

The shape of the velocity profile in such systems changes 
over time, because of which the shear stress on the wall 

varies as well (Brunone & Berni, 2010), and this in turn 
leads to temporally variable drag. We considered the 

average profile of flow in this analytical examination. 

Experimental study of the transient flow in a coiled 

pipe using PIV has shown that the energy dissipation is 

different for steady-state and unsteady-state flows (Brito 

et al., 2016). In particular, the flow may undergo local 

accelerations or decelerations in transient flow as well as 

occurrence of asymmetric flow. This means that the key 

features of the unsteady-state flow should be carefully 

considered in estimation of the pressure drop in pipe 

flows. 

5. CONCLUSIONS 

In this study, we examined the inflectional instability 

of pipe flow and the stabilizing effect of a flattened 

velocity profile on it. The flattened velocity profile 

helped eliminate the point of inflection on the velocity 

profile of flow in a certain range of value of the Reynolds 

number. The energy gradient theory can explain and 

predict the mechanism of this stabilizing effect as 

evidenced in experiments by Hof et al. (2010a). The 

conclusions of this study can be summarized as follows: 

(1) We used the energy gradient theory to reasonably 

explain the stabilizing mechanism of the flattened 

velocity profile, and showed why this is effective only at 

low values of Re. The mechanism of initial streamwise 

vortices was also discussed. We found that flattening the 

velocity profile reduced the maximum of the energy 

gradient function K and stabilized the flow. The 

occurrence of the point of inflection on the velocity 

profile was delayed, and the critical Reynolds number for 

the transition to turbulence moved to a larger value.  

(2) Although the proposed technique is useful for 

stabilizing the flow and delaying the transition to 

turbulence, it has three disadvantages (Hof et al., 2010a, 

b): (a) Energy is required to broaden the velocity profile 

of the base flow, such as that of liquid metals or plasmas 

via magnetic fields, as has been suggested by Hof et al. 

(2010a). (b) The flattened velocity profile increases the 

drag force associated with laminar flow owing to a 

steeper gradient near the wall. (c) The proposed control 

over turbulence is effective only at low Reynolds 

numbers (close to 2000). At large values of Re, not only 

can the turbulence not be delayed, but the drag force 

associated with laminar flow also significantly increases. 

For example, at Re=3000 and  =1.3, Kmax was about 

394, which is already larger than the critical value of 

Kc=385 for the original laminar parabolic flow, such that 

the system still tended toward turbulence. Meanwhile, 

the drag increased to 2.3 times that of parabolic laminar 

profile, as shown in Table 1. 

(3) We used the energy gradient theory to support 

the idea proposed by Hof et al. (2010a), that removing 

the point of inflection on the velocity profile of pipe 

flows can delay the transition to turbulence. This is 

because a singular point always exists near the point of 

inflection. Eliminating the point of inflection is to 

remove a singular point, which stabilizes the flow while 

avoiding occurrence of a turbulent “burst.”  

(4) The instability induced by the point of inflection 

on the velocity profile was analyzed based on the 

Navier–Stokes equation by using the energy gradient 

theory. This is not related to the instability of inviscid 

flow, which is described by the Euler equation (Rayleigh, 

1880). 

Finally, it should be pointed out that only flows in 

circular pipe with smooth surface are considered when 

the analytical method is applied in the present work. 

Effect of the wall roughness on the flow behavior would 

be considered in future studies. 
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