Albadawi, A., Donoghue, D., Robinson, A., Murray, D., & Delauré, Y. (2013). Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment.
International Journal of Multiphase Flow, 53, 11-28.
https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005
Baodong, S., Lifeng, W., Jianyun, L., & Heming, C. (2011). Multi‐objective optimization design of a micro‐channel heat sink using adaptive genetic algorithm.
International Journal of Numerical Methods for Heat & Fluid Flow, 21(3), 353-364.
https://doi.org/10.1108/09615531111108512
Chen, B. F., & Nokes, R. (2005). Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank.
Journal of Computational Physics, 209(1), 47-81.
https://doi.org/10.1016/j.jcp.2005.03.006
Ebrahimian, M., Noorian, M. A., & Haddadpour, H. (2013). A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers.
Engineering Analysis with Boundary Elements, 37(2), 383-392.
https://doi.org/10.1016/j.enganabound.2012.11.006
Jin, X., Liu, M., Zhang, F., & Li, D. (2022). Mitigation of liquid sloshing by multiple layers of dual horizontal baffles with equal/unequal baffle widths.
Ocean Engineering, 263, 112184.
https://doi.org/10.1016/j.oceaneng.2022.112184
Kolaei, A., Rakheja, S., & Richard, M. J. (2015). A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container.
Computers & Fluids, 107, 43-58.
https://doi.org/10.1016/j.compfluid.2014.10.013
Li, K., Chen, H., Xia, D., Zhang, H., Dou, B., Zhang, H., Liu, N., Su, L., Zhou, X., & Tu, R. (2023). Assessment method of the integrated thermal management system for electric vehicles with related experimental validation.
Energy Conversion and Management, 276, 116571.
https://doi.org/10.1016/j.enconman.2022.116571
Lu, L., Jiang, S. C., Zhao, M., & Tang, G. Q. (2015). Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions.
Ocean Engineering, 108, 662-677.
https://doi.org/10.1016/j.oceaneng.2015.08.060
Mitra, S., Upadhyay, P. P., & Sinhamahapatra, K. P. (2008). Slosh dynamics of inviscid fluids in two‐dimensional tanks of various geometry using finite element method.
International Journal for Numerical Methods in Fluids, 56(9), 1625-1651.
https://doi.org/10.1002/fld.1561
Stern, F., Wilson, R., & Shao, J. (2006). Quantitative V&V of CFD simulations and certification of CFD codes.
International journal for numerical methods in fluids, 50(11), 1335-1355.
https://doi.org/10.1002/fld.1090
Tian, Z., & Gu, B. (2019). Analyses of an integrated thermal management system for electric vehicles.
International Journal of Energy Research, 43(11), 5788-5802.
https://doi.org/10.1002/er.4679
Xue, M. A., Zheng, J., Lin, P., & Yuan, X. (2017). Experimental study on vertical baffles of different configurations in suppressing sloshing pressure.
Ocean Engineering, 136, 178-189.
https://doi.org/10.1016/j.oceaneng.2017.03.031
Zhang, E. (2020). Numerical research on sloshing of free oil liquid surface based on different baffle shapes in rectangular fuel tank.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(2-3), 363-377.
https://doi.org/10.1177/0954407019855569
Zhang, E., Zhu, W., & Wang, L. (2020). Influencing analysis of different baffle factors on oil liquid sloshing in automobile fuel tank.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(13), 3180-3193.
https://doi.org/10.1177/0954407020919584