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ABSTRACT 

Accurate prediction of wind pressures on buildings is crucial for designing safe 

and efficient structures. Existing computational methods, like Reynolds-

averaged Navier-Stokes (RANS) simulations, often fail to predict pressures 

accurately in separation zones. This study proposes a novel deep-learning 

methodology to enhance the accuracy and performance of eddy viscosity 

modeling within  RANS turbulence closures, particularly improving predictions 

for bluff body aerodynamics. A deep learning model, trained on large eddy 

simulation (LES) data for various bluff body geometries, including a flat-roof 

building and forward/backward facing steps, was used to adjust eddy viscosity 

in RANS equations. The results show that incorporating the machine learning-

predicted eddy viscosity significantly improves agreement with LES results and 

experimental data, particularly in the separation bubble and shear layer. The 

deep learning model employed a neural network architecture with four hidden 

layers, 32 neurons, and tanh activation functions, trained using the Adam 

optimizer with a learning rate of 0.001. The training data consisted of LES 

simulations for forward/backward facing steps with width-to-height ratios 

ranging from 0.2 to 6. The study reveals that the machine learning model 

achieves a balance in eddy viscosity that delays flow reattachment, leading to 

more accurate pressure and velocity predictions than traditional turbulence 

closures like k-ω SST and k-ε. A sensitivity analysis demonstrated the pivotal 

role of eddy viscosity in governing flow separation, reattachment, and pressure 

distributions. Additionally, the investigation underscores the disparity in eddy 

viscosity values between RANS and LES models, highlighting the need for 

enhanced turbulence modeling. The findings presented in this paper offer 

substantive insights that can inform the advancement of more dependable 

computational methodologies tailored for engineering applications, 

encompassing wind load considerations for structural design and the intricate 

dynamics of unsteady aerodynamic phenomena. 
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1. INTRODUCTION 

1.1 Background 

Wind engineering is crucial for ensuring the safety 

and stability of structures under environmental stressors 

like hurricanes and non-synoptic flows. Bluff body 

aerodynamics and wind structural engineering within the 

lower atmospheric boundary layer (ABL) involve 

complex phenomena that pose significant challenges in 

computational and experimental studies (Aly, 2014; Aly 

& Dragomirescu, 2018). The ABL is characterized by 

turbulence, velocity gradients, and Reynolds number 

effects, complicating the accurate prediction of wind 

effects on structures (Ai & Mak, 2015; Yan & Li, 2017; 

Liu & Stevens, 2020). 

For decades, ABL wall-bounded wind tunnels have 

been used to investigate wind structural engineering issues 

and other environmental fluid mechanics problems. 

However, scale effects often limit their ability to 

accurately predict full-scale physics (Aly & Bitsuamlak, 

2013; Aly, 2016; Aly et al., 2022). Computational fluid 

dynamics (CFD) has become popular for modeling wind 

effects, yet accurately predicting wind pressures on 

structures remains challenging. RANS simulations, in 
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particular, often fail to accurately predict wind pressures 

on bluff bodies, especially in the separation zone, such as 

flat roofs (Khaled & Aly, 2022). Although large eddy 

simulations (LES) are more accurate, they require 

significantly more time and resources. 

Incorporating machine learning into CFD modeling 

may provide deeper insights into the shortcomings of 

RANS simulations in predicting wind-induced pressures 

in the shear layer (Aly & Gol-Zaroudi, 2020). Further 

research is necessary to enhance our understanding of 

bluff body aerodynamics and environmental fluid 

mechanics in the ABL (Ferreira et al., 2019; Gnatowska, 

2019; San et al., 2019; Sharma et al., 2019; ElDegwy et 

al., 2022; Banari et al., 2023). 

1.2 CFD Modeling 

CFD modeling has gained popularity in wind 

engineering, aerodynamics, and fluid mechanics 

applications (TienPhuc et al., 2015; Ma & Lai, 2016; 

Zhang et al., 2017; Li et al., 2019; Dickison et al., 2020; 

Mahboub et al., 2022; Akhlaghi et al., 2023; Xingjun et 

al., 2023; Wadi Al-Fatlawi et al., 2024). However, 

accurately predicting wind pressures on structures remains 

challenging. RANS simulations are commonly employed 

but often yield inaccurate results due to turbulence 

closures rather than flow turbulence modeling. Although 

time-consuming and computationally expensive, LES 

simulations can be utilized to model wind effects. 

Resolving small spatiotemporal features incurs high 

computational costs, and there is a tradeoff between 

tractability and accuracy. An alternative approach 

involves employing a wall model for large-eddy 

simulation using the lattice Boltzmann method, which 

considers the wall's impact on the flow field and 

demonstrates its applicability to complex turbulent flows 

(Malaspinas & Sagaut, 2014). 

However, in turbulent flows, the computational cost 

to resolve the small eddies increases by a factor 

proportional to the Reynolds number raised to the power 

of three. Therefore, if the Reynolds number is increased 

by a factor of 10, the computational cost is estimated to 

increase by a factor of 1000. This increase in 

computational expense makes LES challenging and DNS 

(direct numerical simulations) impractical for 

environmental fluid mechanics problems. Also, the same 

reason leads to the employment of RANS closures with 

LES on coarser grid arrangements, with a tradeoff of 

accuracy. A comparison between LES and wind tunnel 

experiments shows good agreement regarding mean 

velocity, turbulence statistics, and pressure distribution 

(Smolarkiewicz et al., 2007). The mesh generation, sizing, 

and convergence were explored for simulating 

atmospheric boundary layer flow to optimize the 

numerical simulation process (Gargallo-Peiró et al., 

2018). Despite the increasing progress with LES, some 

limitations exist concerning the accuracy and 

computational requirements. The dependence of LES on 

the sub-grid scale (SGS) models is one of the main reasons 

for the inaccuracies (Kochkov et al., 2021). Simulating 

flow problems of higher Reynolds numbers creates 

challenges for CFD applications. 

Turbulence modeling is essential for accurate and 

reliable CFD simulations, as turbulent flows are prevalent. 

Turbulence closures are required unless the expensive 

DNS is employed to directly solve the Navier-Stokes (NS) 

equations. The analysis of fluid motion, especially 

involving turbulence, is commonly achieved by applying 

NS equations. DNS is a technique that employs NS 

equations to resolve spatial and temporal turbulence 

numerically without any turbulence model (Orszag, 

1970). This means that the turbulence's whole range 

of spatial and temporal scales must be resolved. DNS is 

currently deemed the most precise CFD method. 

However, it is restricted to low Reynolds number flows, 

as the computation cost increases substantially for higher 

Reynolds numbers. A flow model that combines the 

RANS equations and the continuity equation can be used 

to solve this issue. This simplified approach has proven to 

be a practical alternative to DNS (Zhou, 2017). 

𝜕𝜌𝐔

𝜕𝑡
+ ∇ ∙ (𝜌𝐔𝐔𝑇) = −∇𝑝 + ∇ ∙ (2𝜇𝑚𝐒 + 𝜌𝐑) + 𝜌𝑓     (1) 

  ∇ ∙ 𝐔 = 0                                                                        (2) 

here, U is the fluid velocity vector, 𝜌 is the density, S is a 

tensor representative of the mean strain rate, μm denotes 

the dynamic viscosity, p denotes pressure, R is a tensor 

containing the Reynolds stresses, and f is the externally 

applied force. The concept of molecular viscosity pertains 

to the transfer of momentum through molecular motion. In 

equation (1), the left-hand side comprises the temporal 

derivative of the convective acceleration and the local 

velocity, while the right-hand side accounts for the 

influence of external forces, pressure gradient, and 

viscosity. Per the Boussinesq assumption, the eddy 

viscosity is simulated by transferring momentum from 

turbulent eddies (Kundu et al., 2012). This approach draws 

upon the analogy between scalar transport and laminar 

momentum transport based on molecular motion and 

turbulent momentum transport and scalar transport based 

on eddy motion, as explained by Kundu et al. (2012). In 

the context of the RANS closure, the parameter R is 

defined as follows. 

 𝐑 = −𝑢′𝑢′𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 2

𝜇𝑡

𝜌
𝐒 −

2

3
𝑘𝛿𝒊𝒋                                      (3) 

𝐒 =  
1

2
(∇𝐔 + (∇𝐔)𝑇)                                                        (4) 

in which k is the kinetic energy of turbulence, μt denotes 

eddy viscosity, u′ represents the velocity fluctuating 

component, and δij refers to the Kronecker delta. 

Reynolds stresses emerge due to the advection term in the 

momentum conservation equation, which embodies the 

mean stresses of fluctuations (Kundu et al., 2012). 

Reynolds stresses can be regarded as the pace of transfer 

of mean momentum that results from the fluctuations in 

the flow and are generally more substantial than the 

viscous stresses, except in the proximity of a solid surface 

where the fluctuations become negligible. 

The Reynolds stress terms are not readily known and 

necessitate a turbulence closure to solve the RANS 

equations. Turbulence closures can be categorized using 

additional equations to approximate the Reynolds stress 

terms. They can vary from simplistic algebraic 
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expressions to highly intricate relations that exhibit high 

fidelity. In RANS simulations, the two-equation models 

are predominantly employed. Turbulence closures 

typically consist of equations for turbulence kinetic energy 

and turbulent length scale (Menter, 1992). The most 

commonly used turbulence closures in RANS simulations 

are the k-ε and k-ω closures. The k-ε closure was initially 

developed in 1973 and has undergone several refinements 

since (Jones & Launder, 1973). The eddy viscosity, μt, is 

expressed as follows: 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
                                                                                (5) 

where k refers to the turbulence kinetic energy, ε denotes 

the dissipation rate, and Cμ is a constant (Aly & 

Dougherty, 2021). Turbulence closures for RANS 

simulations exhibit limitations due to their underlying 

assumptions. One way to address this is to use models like 

LES to resolve most turbulence energy and only 

approximate the sub-grid portion. Recently, machine 

learning has gained significant attention as a tool for 

accelerating the solution of complex flow problems in 

various applications. In CFD, machine learning can be 

used for shape optimization studies and predicting results 

for untested cases based on high-fidelity simulations.  

The choice of SGS models with LES and hybrid 

RANS-LES models significantly influences CFD 

simulations' computational time and accuracy. The author 

investigated the effects of different SGS models on empty-

domain flow features and found that LES (with WALE 

SGS model) and DES offer higher accuracy than other 

widely used SGS versions (Khaled et al., 2021). Wall-

modeled LES and hybrid RANS-LES offer more realistic 

solutions to identified issues (Slotnick et al., 2014).  

Applying deep learning in CFD can reduce 

computational costs and increase accuracy significantly 

(Zan et al., 2022; Bao et al., 2023; Chen et al., 2023). 

Recent empirical research has demonstrated that 

leveraging machine learning techniques can significantly 

expedite computational fluid dynamics simulations while 

maintaining high fidelity and precision in the computed 

results (Zhao et al., 2021; Zhu et al., 2022). Hybrid ML-

PDE techniques and artificial neural network models can 

be instrumental in turbulent flow simulations and wake 

prediction of wind turbines (Pathak et al., 2020). 

1.3 Machine Learning and Computational Fluid 

Dynamics  

Machine learning (ML) has emerged as a promising 

approach for enhancing the precision and efficiency of 

CFD simulations (Singh et al., 2017; Pathak et al., 2020; 

Ti et al., 2020; Kochkov et al., 2021). Recent studies have 

demonstrated the potential of ML-enabled CFD 

simulations to yield more accurate outcomes than 

conventional RANS closures (Duraisamy et al., 2019; 

Zhao et al., 2020). 

Moreover, ML-based approaches have shown 

promising results in improving the accuracy and 

efficiency of RANS turbulence closures. Researchers have 

proposed innovative ML-based methods, such as 

convolutional neural networks (CNNs), iterative ML 

 

frameworks, and Bayesian deep neural network (BDNN) 

approaches, to address challenges in RANS modeling 

(Fukami et al., 2019; Geneva & Zabaras, 2019; Liu et al., 

2021). These approaches have been shown to outperform 

traditional RANS closures, especially for complex flow 

scenarios.  

In recent studies, novel materials such as black 

phosphorus (BP) have shown promise in controlling fluid 

transmission devices due to their unique surface properties 

(Zhang et al., 2019). Additionally, innovative fluid 

dynamics models, such as the 'channel moving' pressure-

driven model, have been proposed to generate constant 

pressure gradients in fluid flow, offering insights into 

atomistic-to-continuum coupling and the applicability of 

classical fluid dynamics equations in nanochannel flow 

width. These advancements highlight the potential of 

integrating novel materials and fluid dynamics models to 

enhance membrane technology and fluid transmission 

systems. 

Majchrzak et al. (2023) reviewed the challenges 

associated with traditional numerical methods for 

simulating turbulent flows and explored how machine 

learning approaches, including closure models, direct 

modeling, and hybrid modeling, can potentially overcome 

some of these challenges (Majchrzak et al., 2023). The 

review concludes that ML has the potential to improve the 

accuracy and efficiency of turbulent flow simulations 

significantly but requires further research to understand its 

capabilities and limitations fully. In this paper, machine 

learning is used to manipulate the eddy viscosity in RANS 

simulations for improved prediction of wind pressures on 

bluff bodies. While ML techniques hold significant 

potential for advancing RANS modeling in CFD, further 

research is needed to understand their capabilities and 

limitations fully. Continued exploration of ML-based 

approaches in turbulent flow simulations could lead to 

more accurate and efficient CFD simulations in various 

applications. 

1.4 Novelty and Originality 

Despite significant advancements in wind 

engineering and CFD, accurately predicting wind 

pressures on bluff bodies using RANS simulations 

remains challenging. Current computational approaches 

struggle with turbulence closures that inadequately model 

complex flow phenomena in separation zones and shear 

layers. This research addresses this gap by integrating 

machine learning with CFD to enhance the precision and 

efficiency of RANS simulations. We train a deep learning 

model on LES data to manipulate eddy viscosity in RANS 

closures, improving the capture of flow physics in critical 

areas. This novel methodology provides more accurate 

predictions of wind pressures on bluff bodies and 

enhances the reliability of computational approaches in 

wind engineering and environmental fluid mechanics. 

Furthermore, the proposed approach offers valuable 

insights into the role of eddy viscosity in understanding 

the fundamental aerodynamics of separation zones and 

shear layers, contributing to a deeper comprehension of 

the underlying flow dynamics. 
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1.5 Objectives and Paper Layout 

Environmental fluid mechanics studies in CFD are 

challenging due to limitations in current turbulence 

models, which struggle with accurately predicting 

complex flow behavior. These models face issues related 

to accuracy, stability, and efficiency. Deep learning offers 

promising improvements in these areas, potentially 

yielding more accurate results than traditional RANS 

simulations. This paper aims to investigate the accuracy of 

RANS simulations in predicting wind effects on flat roofs, 

particularly in the presence of flow separation. We focus 

on two main hypotheses: (1) inaccurate RANS simulations 

are due to flawed eddy viscosity closure approximations, 

and (2) machine learning can effectively train models to 

produce eddy viscosity for RANS equations. We detail the 

simulation setup and machine learning-based eddy 

viscosity modeling methodology to test these hypotheses. 

We then present and analyze the results, comparing the 

accuracy of machine learning-based RANS simulations 

with conventional RANS and LES results. Additionally, 

we examine the role of eddy viscosity in RANS simulation 

accuracy and roof pressure predictions in flow separation 

contexts. The paper is structured clearly and logically, 

guiding the reader through the research process. Section 2 

provides a comprehensive overview of the research 

methodology, ensuring transparency and replicability. 

Section 3 presents the study's results, highlighting the key 

findings and their significance. The discussion in Section 

4 delves deeper into the implications of these results, 

drawing connections to existing literature and exploring 

potential applications. Finally, Section 5 concisely 

summarizes the main conclusions drawn from the 

research, emphasizing the importance of the study and its 

contributions to the field. 

2. METHODOLOGY 

The aerodynamic characteristics of bluff bodies, such 

as low-rise buildings situated in the atmospheric boundary 

layer (ABL), are governed by complex flow phenomena, 

including flow separation, reattachment, vortex shedding, 

and other unsteady features. An accurate representation of 

these complex flow features is crucial for predicting wind-

induced pressures on flat roofs (Khaled & Aly, 2023). The 

effectiveness of ML-based RANS simulations is 

investigated for flat roofs by conducting simulations on a 

full-scale cube in the 'open country' at Silsoe, UK. This 

location has been previously subjected to extensive 

measurement and analysis of surface pressures along the 

vertical ring of the Silsoe cube (Richards & Hoxey, 2002, 

2012). The Silsoe cube is a field experimental building 

designed for wind pressure measurements. It is a 6 m x 6 

m x 6 m cube-shaped building with a flat roof and four 

identical sides. The building was constructed in the early 

1990s by the Building Research Establishment (BRE) at 

their Silsoe Research Institute site in Bedfordshire, UK. 

The purpose of the Silsoe cube was to study the wind 

pressures on a simple cube-shaped building to improve 

building design standards for wind loading. The Silsoe 

cube has since been used extensively in wind engineering 

research and has become a widely recognized benchmark 

for evaluating CFD models of wind pressure on buildings. 

Integrating the ML model with the OpenFOAM software 

aims to enhance RANS simulations' precision and 

computational efficiency. The ML model accurately 

estimates the eddy viscosity in RANS simulations and 

enables faster and more accurate simulations (Maulik et 

al., 2021). The results are then compared with those from 

LES, commonly used in building aerodynamics due to the 

limitations of RANS closures in predicting complex 

phenomena such as flow separation. 

To investigate the accuracy of the ML-based RANS 

simulations, we introduced a forward/backward step 

geometry into the computational domain, as illustrated in 

Fig. 1. The grid independence study is a crucial step in 

ensuring the accuracy and reliability of CFD simulations. 

To assess the influence of mesh resolution on the results, 

three different grids were employed: a low-resolution grid 

with 670,992 cells, a medium-resolution grid with 

738,624 cells, and a high-resolution grid with 2,525,196 

cells. 

 

   

(a) (b) (c) 

  

(d) (e) 

Fig. 1 Sample geometries of forward/backward facing steps used for training the deep learning model. (a-c) 

Variations in step width (w) relative to step height (h): (a) w = 0.2h, (b) w = 2h, and (c) w = 6h. (d) High-fidelity 

prismatic mesh generated for w = 6h case. (e) Magnified view of the mesh near the step 
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 (1) (2) 

a 
 

 

b   
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Fig. 2 Grid independence study for pressure coefficient predictions using the k-ω SST turbulence closure. (a1) 

Low-resolution mesh with 670,992 cells. (a2) Pressure coefficient distribution on the low-resolution mesh. (b1) 

Medium-resolution mesh with 738,624 cells. (b2) Pressure coefficient distribution on the medium-resolution 

mesh. (c1) High-resolution mesh with 2,525,196 cells. (c2) Pressure coefficient distribution on the high-resolution 

mesh. Results demonstrate grid convergence of the pressure predictions as the mesh is refined 

 

Figure 2 illustrates the mesh characteristics and 

corresponding pressure coefficient distributions for each 

grid level, obtained using the k-ω SST turbulence closure. 

The low-resolution grid (Fig. 2a(1)) exhibits a relatively 

non-uniform cell size, while the medium-resolution grid 

(Fig. 2b(1)) incorporates localized refinement around the 

cube to capture flow details more accurately. The high-

resolution grid (Fig. 2c(1)) further enhances the 

resolution, particularly in the near-wall regions, to better 

resolve boundary layer effects. The pressure coefficient 

distributions (Fig. 2, column (2)) demonstrate the impact 

of grid resolution, with the finer meshes capturing more 

intricate flow features and pressure variations around the 

cube. A time step of 0.001 s was used for LES simulations 

to maintain a Courant number of less than 1. 

LES were conducted for several cases with width-to-

height (w/h) ratios of 0.2, 0.5, 0.75, 1, 1.25, 1.75, 2, 3, 4, 

and 6. High-quality prismatic element meshes were 

generated using the OpenFOAM blockMesh utility. 

Figure 3 displays a sample of the LES results utilized for 

the ML model training. The contours represent the 

instantaneous velocity and averaged total turbulent kinetic 

energy for different w/h ratios, which were employed to 

calculate the eddy viscosity. The data from LES 

simulations, including the velocity, eddy viscosity, and 

depth of the forward/backward-facing step, are used later 

to train the ML model to predict eddy viscosity for a given 

velocity and depth. 

Recently, researchers have actively explored 

integrating machine learning (ML) techniques to reduce 

the computational burden associated with CFD 

simulations. The term "machine learning" was coined by 

Arthur Samuel, a pioneering computer scientist at IBM, in 

1959 (Samuel, 1959, 1962). ML encompasses a broad 

range of methods that leverage data to enhance the 

performance of various tasks (Mitchell, 1997). The 

primary categories of ML algorithms include supervised, 

unsupervised, and reinforcement learning approaches. 

Supervised learning algorithms map labeled input data to 

known output targets, typically addressing regression and 

classification problems. On the other hand, unsupervised 

learning techniques aim to uncover underlying patterns 

and structures within datasets, facilitating dimensionality 

reduction and clustering tasks. Reinforcement learning 

algorithms learn through a trial-and-error process, 

iteratively refining their decision-making strategies to 

solve control problems. 

At the core of ML lies the optimization of model 

parameters based on available data. Neural networks, a 

prominent class of ML models, are designed to mimic the 

information-processing capabilities of the human brain. In 

its most fundamental configuration, neural network 

architectures are composed of input layers, hidden layers, 

and output layers, as illustrated in Fig. 4. The input 

neurons receive and classify the input information, which 

is subsequently transmitted through the intervening neural 

network layers until arriving at the output layer, where the 

ultimate inference is generated. 
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a   

b   

c   

d 
 

 

 
  

 (1) (2) 

Fig. 3 Sample LES results for forward/backward facing steps with varying width-to-height ratios (w/h). Column 

1 shows contours of instantaneous velocity (m/s), while Column 2 depicts contours of averaged total turbulent 

kinetic energy (m²/s²) for step geometries with (a) w = 0.2h, (b) w = 0.5h, (c) w = h, and (d) w = 6h. The LES data 

were used as training inputs for the deep learning model to predict eddy viscosity for a given step geometry 

 

 

 
Fig. 4 Schematic of a typical feedforward neural network architecture. The network consists of an input layer 

that receives the input data, one or more hidden layers that apply transformations to the data, and an output 

layer that produces the final predictions. Each layer is composed of interconnected nodes or neurons. The 

connections between neurons have associated weights that are adjusted during training to optimize the 

network's performance. The data propagates unidirectionally from the input to the output layer without 

recurrent connections or feedback mechanisms 

 

input layer hidden layers output layer
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Fig. 5 Common activation functions used in neural networks: (a) ReLU: outputs x if positive, 0 otherwise. Simple 

yet effective. (b) Leaky ReLU: similar to ReLU but assigns a slight positive slope to negative values. (c) Sigmoid: 

squashes any input to range (0, 1). Useful for modeling probabilities. (d) Tanh: outputs values in the range (-1, 

1). Zero-centered can be advantageous over sigmoid. The current study employed tanh activation for input and 

hidden neural network layers. The choice of activation function depends on the specific problem and 

architecture 

 

Each neuron in a neural network is assigned a weight and 

a threshold value, with the weight matrices represented by 

the connections between neurons in the network diagram. 

The weighted sum of the inputs at each node in an artificial 

neural network is passed through an activation function. 

Based on a predefined activation threshold, this function 

determines whether the node's output value will be 

propagated to the next layer. The incorporation of an 

activation function within the neural network architecture 

serves to introduce nonlinear properties. This enables the 

model to effectively learn and capture intricate 

relationships inherent in the input data, facilitating the 

approximation of complex functions. 

Several parameters play a crucial role in evaluating 

and performing neural network models. One essential 

parameter is the choice of activation functions applied to 

the weighted sum at each neuron. Neural networks model 

complex functions by constructing networks of 

interconnected nodes (Fig. 5). These nodes accumulate 

values from previous nodes through an activation function 

g. For a layer l in the network, the output of the ith node ai,l 

is computed as follows (Thuerey et al., 2020; Aly & 

Clarke, 2023): 

𝑎𝑖,𝑙  = 𝑔(∑ 𝑤𝑖𝑗,𝑙−1 𝑎𝑗,𝑙−1
𝑛𝑙−1
𝑗=0 )                                            (6) 

where nl-1 is the total number of nodes in layer l-1, and w 

is the weight.  

The rectified linear activation function (ReLU) 

provides an output if its input is positive. Otherwise, the 

output is zero (Fig. 5-a). The leaky ReLU is a type of 

ReLU that defines a slight slope that leaks some positive 

values to zero if they are close enough to zero (Fig. 5-b). 

Other activation functions include the sigmoid and tanh 

functions (Fig. 5-c&d). The tanh activation function was 

employed for both input and hidden layers during training, 

as it provided better performance than the other options. A 

learning rate of 0.001 was used for the optimization. 

Deep learning using TensorFlow in OpenFOAM was 

implemented to accelerate fluid flow simulations. The 

methodology was based on the steps outlined by Maulik 

et al. (2021). TensorFlow was integrated with 

OpenFOAM by installing the TensorFlow library and 

configuring the OpenFOAM environment to recognize 

TensorFlow (Maulik et al., 2021). A TensorFlow neural 

network model was created and trained using data from 

LES simulations on the forward/backward step. The 

neural network was designed to predict fluid flow 

outcomes based on inputs such as flow conditions, 

boundary conditions, and geometry. The calculated results 

of the eddy viscosity, velocity, and coordinates from 10 

LES simulations were used to train the ML model. The 

training dataset consisted of eight samples; the remaining 

two were used for testing. The predicted eddy viscosity for 

a given step width is obtained as the output of the ML 

model, which consists of four hidden layers and 32 

neurons. The eddy ML-obtained eddy viscosity was then 

used to solve the RANS equations.  

The training results are depicted in Fig. 6. The model 

was validated by comparing its predictions with actual 

LES OpenFOAM simulation results and experimental 

data from the literature. The trained neural network model 

was used to manipulate the eddy viscosity to understand 

its role in the flow properties such as velocity and 

pressure. 
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Fig. 6 Comparison of machine learning predicted eddy viscosity (m²/s) versus the ground truth values from LES 

data. The neural network was trained on LES results for forward/backward facing steps with varying width-to-

height ratios. The close agreement between the ML predictions and LES data demonstrates the ability of the 

trained model to accurately estimate the eddy viscosity field for flow around bluff bodies 

 

3. RESULTS 

The results from various RANS simulation cases are 

analyzed to obtain the distribution of the mean Cp along 

the vertical ring, and these are compared with reference 

LES results. It is well known that RANS turbulence 

closures often fail to predict complex flow scenarios such 

as flow separation accurately. Our findings align with this 

observation; all RANS cases fail to reproduce the 

magnitude and pattern of the mean Cp in the flow-

separated zone, particularly on the roof. The k-ε 

turbulence closure's limitations prompted using the k-ω 

SST closure, but the two closures did not accurately 

recreate the flow physics in the flow-separated zone. 

Figure 7 shows that the pressure coefficient obtained 

by the ML approach is close to the LES and experimental 

results from the literature (Lim et al., 2007; Guichard, 

2019). The ML model outperforms the k-ε and k-ω SST 

turbulence closures in predicting mean pressures on the 

roof, especially in the flow-separated zone. The k-ε 

closure produced higher negative pressures near the 

windward side but significantly lower negative pressure 

on the rest of the roof, explained further by the velocity 

contour in Fig. 8). 

As shown in Fig. 8a, the flow reattaches to the roof in 

the k-ε case, resulting in less suction, except near the 

windward side, where the magnitude of negative pressure 

is significantly high. The k-ω closure experiences 

significant flow separation on the roof, with a more 

uniform pressure distribution (Fig. 8b), leading to uniform 

negative pressure on the roof (Fig. 7). The ML model 

shows flow separation at the windward side, with minor 

reattachment near the leeward side (Fig. 8c), consistent 

with pressures in Fig. 7. 

The eddy viscosity was studied to understand the flow 

physics and the discrepancies between LES and RANS 

simulations on the Silsoe cube further. Using a Notebook 

PC with 12 cores and 40 GB of available memory, the k-ε 

turbulence closure took about 21.75 minutes to converge, 

the k-ω SST took 44.3 minutes, the ML took 6.27 minutes, 

and the LES took about 5.6 hours. 

Figure 9 displays the eddy viscosity contour maps for 

the RANS and ML simulations. The eddy viscosity values 

predicted by the k-ε, k-ω SST, and LES-based ML model 

differed significantly. The ML model produced higher 

eddy viscosity values on the roof and in the wake of the 

bluff body (ranging between 0.05 and 0.5 m²/s). In 

comparison, the RANS closures produced lower and more 

uniform eddy viscosity values on the roof and wake of the 

cube (0.2 m²/s). However, the RANS simulations 

predicted higher eddy viscosity values towards the upper 

boundary than the ML model. These differences highlight 

the importance of eddy viscosity as a critical parameter in 

generating roof pressure. 

To investigate the sensitivity of roof pressure to eddy 

viscosity, we systematically varied the eddy viscosity 

values in the ML model by multiplying them by a factor 

ranging from 0.2 to 10, where 1 signifies the original LES-

produced eddy viscosity, 0.2 denotes smaller values, and 

10 indicates values ten times larger. 

Figure 10 illustrates the impact of varying eddy 

viscosity on the velocity contours around the bluff body. 

The contours reveal that increasing the eddy viscosity 

leads to a higher degree of flow reattachment on the 

leeward side of the bluff body, as evidenced by the 

backward movement of the reattachment point. This leads 

to significantly less negative pressure on most of the 

leeward surface but higher negative pressures near the 

windward side, as shown in Fig. 7 (k-ε results). This is 

consistent with the velocity and eddy viscosity contours 

for the k-ε RANS model shown in Fig. 8a and Fig. 9a, 

respectively. The k-ε model predicts higher eddy viscosity  
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Fig. 7 Comparison of roof pressure coefficients (Cp) obtained from ML, LES, RANS simulations using k-ε and 

k-ω SST turbulence closures, and experimental data. The ML approach closely matches the LES results and 

experimental data, particularly in the flow separation region on the roof. In contrast, the k-ε model predicts 

higher negative pressures near the windward roof edge due to a small, tight separation bubble, while the k-ω 

SST model underpredicts the negative pressures on most of the roof. The ML model's ability to accurately 

capture the pressure distribution, especially in the separated flow region, demonstrates its effectiveness in 

improving RANS simulations of bluff body aerodynamics compared to traditional turbulence closures 

 

values in the separation region compared to the machine 

learning approach, resulting in a small separation bubble 

near the windward side of the roof (with a sharp increase 

in the negative pressure) and early reattachment that 

reduced the magnitude of the negative pressure on most of 

the roof towards the leeward side.  

In contrast, decreasing the eddy viscosity in the ML 

model resulted in the reattachment point moving forward, 

leading to more negative pressure on most of the leeward 

surface but still high negative pressures near the windward 

side, as shown in Fig. 7 (k-ω SST results). This is 

consistent with the velocity and eddy viscosity contours 

for the k-ω SST RANS model shown in Fig. 8b and Fig. 

9b, respectively. The k-ω SST model predicts lower eddy 

viscosity values in the separation region than the machine 

learning approach, resulting in a more significant 

separation bubble and delayed reattachment.  

These results further demonstrate the pivotal role of 

eddy viscosity in governing the flow separation, 

reattachment, and pressure distribution around bluff 

bodies, which is accurately captured by the machine 

learning enhanced RANS approach. The k-ε model's 

higher eddy viscosity in the separation region leads to 

faster reattachment and reduced negative pressures on the 

leeward side, while the k-ω SST model's lower eddy 

viscosity results in delayed reattachment and larger 

separation bubbles. The machine learning approach strikes 

a balance in eddy viscosity prediction, leading to a more 

accurate representation of the flow physics compared to 

traditional RANS turbulence closures. 

4. DISCUSSION OF RESULTS 

In this study, machine learning (ML) models were 

trained to manipulate eddy viscosity in Reynolds-

averaged Navier-Stokes (RANS) simulations, improving 

accuracy in predicting fluid dynamics phenomena. The 

research aimed to identify the fundamental elements 

responsible for the variances between forecasted and 

observed mean pressure values in RANS (Reynolds-

Averaged Navier-Stokes) simulations when assessing the 

influence of wind on flat roof structures. The results 

confirm these inaccuracies stem from limitations in the 

eddy viscosity closure approximation used in RANS 

turbulence models. LES data was used to train an ML 

model that provides accurate eddy viscosity for RANS 

simulations to address this. The Silsoe cube, including 

forward- and backward-facing steps, was modeled to train 

the machine learning model for CFD RANS simulations. 

The findings indicate that the eddy viscosity provided  
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Fig. 8 Velocity contours from ML and RANS simulations (m/s): (a) k-ε, (b) k-ω SST, and (c) ML. Comparison of 

velocity contours (m/s) around the bluff body obtained from (a) k-ε RANS, (b) k-ω SST RANS, and (c) machine 

learning (ML) enhanced RANS simulations. The ML approach closely matches the velocity field predicted by 

high-fidelity LES, particularly in the flow separation region on the leeward side of the bluff body. In contrast, 

the k-ε model shows faster flow reattachment, while the k-ω SST model predicts a larger separation bubble. The 

ML model's ability to accurately capture the velocity distribution, especially in the separated flow region, 

demonstrates its effectiveness in improving RANS simulations of bluff body aerodynamics compared to 

traditional linear eddy-viscosity turbulence models 

 

by the ML model differs significantly from that predicted 

by the k-ε and k-ω SST closures. However, the pressures 

predicted by the ML-based eddy viscosity align more 

closely with those from LES simulations.  

To further understand why RANS simulations fail to 

predict roof pressures accurately, the performance of the 

LES model was compared against two conventional 

RANS closures (k-ε and k-ω SST) in predicting the flow 

field in the standard PitzDaily problem (Le et al., 1997). 

The two RANS closures incorrectly predict the eddy 

viscosity (Fig. 11), leading to incorrect velocity (Fig. 12) 

and pressure contours Fig. 13). 

Both conventional RANS closures failed to accurately 

predict the eddy viscosity compared to the LES reference 

data (Fig. 11). These inaccuracies lead to significant 

discrepancies in the velocity and pressure contours (Fig. 

12 and Fig. 13). Conversely, the ML model's eddy 

viscosity predictions agree well with LES data, resulting  



A. M. Aly / JAFM, Vol. 17, No. 12, pp. 2514-2532, 2024.  

 

2524 

(a)  

(b)  

(c)  

 
 

Fig. 9 Comparison of eddy viscosity contours (m²/s) obtained from (a) k-ε RANS, (b) k-ω SST RANS, and (c) 

machine learning (ML) enhanced RANS simulations. The ML approach predicts higher eddy viscosity values 

near the leeward side of the bluff body, particularly in the flow separation region and wake. In contrast, the k-ε 

and k-ω SST models show lower eddy viscosity in this area. Conversely, the RANS closures exhibit higher eddy 

viscosity near the upper boundary of the computational domain. The balanced distribution of eddy viscosity 

predicted by the ML model, both in magnitude and spatial distribution, leads to a more accurate flow physics 

representation than traditional linear eddy-viscosity turbulence models 

 

in improved velocity and pressure predictions. These 

findings support the hypothesis that the failure of RANS 

simulations to predict roof pressures is due to the 

inaccurate modeling of eddy viscosity in the separation 

bubble and shear layer. 

Notably, the LES results used in this study are 

considered more accurate than RANS predictions, as they 

are closer to DNS counterparts (Le et al., 1997). However, 

LES is computationally expensive and may not be feasible 

for practical engineering applications. The research 

presented herein investigates the efficacy of machine 

learning methodologies in expediting and enhancing 

RANS simulations, thereby facilitating precise forecasts 

of wind-induced pressures acting upon planar roof 

surfaces. 

The incorrect representation of eddy viscosity has 

significant implications for the accuracy of mean pressure 

predictions and, consequently, the reliability of RANS 

simulations. Specifically, the findings reveal the 

limitations of RANS simulations in predicting roof 

pressures, primarily due to the inability to predict eddy 

viscosity effectively in the separation bubble and shear layer. 
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(d)  

(e)  

 
 

Fig. 10 Effect of varying eddy viscosity on the flow velocity (m/s) around the bluff body. Velocity contours are 

shown for eddy viscosity values of (a) 0.2, (b) 0.6, (c) 1 (nominal), (d) 5, and (e) 10 times the eddy viscosity 

predicted by the ML model. Increasing the eddy viscosity leads to a higher degree of flow reattachment on the 

leeward side of the bluff body, as evidenced by the backward movement of the reattachment point  
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(a)  

(b)  

 
legend for (a) and (b)  

(c)  

 
legend for (c)  

Fig. 11 Comparison of eddy viscosity contours (m²/s²) from LES and RANS)simulations for the PitzDaily case: 

(a) k-ε RANS, (b) k-ω SST RANS, and (c) reference LES data. The RANS models fail to predict the eddy 

viscosity compared to the LES benchmark accurately. The limitations inherent in eddy viscosity turbulence 

modeling approaches result in notable disparities between the predicted and observed velocity and pressure 

fields, as evidenced by the comparative contours in Figures 12 and 13 

 

(a)  

(b) 

 
 

(c)  

(d)  

 
 

Fig. 12 Comparison of velocity contours (m/s) from LES and RANS simulations for the PitzDaily case: (a) k-ε 

RANS, (b) k-ω SST RANS, (c) instantaneous LES, and (d) time-averaged LES. The RANS models fail to predict 

the velocity field accurately compared to the LES benchmark. The instantaneous LES velocity contours exhibit 

unsteady, turbulent fluctuations, while the time-averaged LES results provide a smoother mean velocity field 

that can be directly compared to the RANS predictions 
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(a)  

(b)  
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Fig. 13 Comparison of pressure contours (Pa) from Large Eddy Simulation (LES) and Reynolds-Averaged 

Navier-Stokes (RANS) simulations for the PitzDaily case: (a) k-ε RANS, (b) k-ω SST RANS, and (c) time-

averaged LES. The RANS models fail to accurately predict the pressure distribution compared to the LES 

benchmark, with the k-ε model underpredicting the negative pressures and the k-ω SST model incorrectly 

predicting the distribution of the negative pressures. These discrepancies are directly linked to the inaccuracies 

in eddy viscosity modeling by the RANS closures, as shown in Fig. 11. These results further support the 

conclusion that the eddy viscosity is critical in shaping the flow behavior and pressure distributions around bluff 

bodies, which is accurately captured by the ML approach but not by the RANS models in this study 

 

Figure 7 comprehensively compares roof pressures 

from the ML, LES, and RANS simulations. The figure 

highlights the differences in pressure distributions among 

the models, with the ML model exhibiting a balance 

between the two RANS models. This balance is crucial for 

understanding the aerodynamics of the roof, as it affects 

the separation bubble and flow reattachment. 

The velocity contours in Fig. 8 provide further insight 

into the flow behavior. The k-ε closure exhibits a short 

separation bubble with rapid reattachment. In contrast, the 

k-ω SST closure shows a longer separation bubble that 

remains open towards the leeward side of the roof. The 

ML model, on the other hand, shows a separation bubble 

longer than the k-ε model but with reattachment close to 

the leeward side of the roof. This variation in flow 

behavior is closely tied to eddy viscosity, as shown in Fig. 

9. The eddy viscosity contours in Fig. 9 reveal that the k-

ε closure exhibits higher eddy viscosity, increasing the 

chances of early flow reattachment. 

In contrast, the k-ω SST closure has the lowest eddy 

viscosity on the entire roof, associated with no flow 

reattachment. The ML model, which balances the eddy 

viscosity between the two RANS closures, shows lower 

eddy viscosity near the windward side but higher near the 

leeward side, leading to delayed flow reattachment. This 

variation in eddy viscosity plays a critical role in the flow 

behavior and pressure distributions observed in the 

simulations. 

The significant differences in eddy viscosity among 

the models, as observed in Fig. 9, profoundly impact the 

flow field. The ML model's eddy viscosity distribution, in 

particular, is distinct from the k-ε and k-ω SST closures, 

resulting in a unique flow behavior. This observation is 

consistent with the findings of the PitzDaily problem 

study, which highlights the sensitivity of flow physics to 

small changes in eddy viscosity. The velocity contours in 

Fig. 12 and the pressure distributions in Fig. 13 further 

support this conclusion, demonstrating that the eddy 

viscosity is critical in shaping the flow behavior and 

pressure distributions around the bluff body. 

The results of this study underscore the importance of 

considering eddy viscosity in understanding the 

aerodynamics of buildings. The ML model balances the 

eddy viscosity between the two RANS closures and 

accurately represents flow behavior and pressure 

distributions. This discovery has significant implications 

for developing more precise simulation models and a 

deeper understanding of the complex interactions between 

flow, pressure, and eddy viscosity. 

This paper demonstrates the potential of ML 

techniques to accelerate numerical solutions, enabling 

RANS simulations to yield accurate results that would 

otherwise require high-fidelity, time-consuming 

simulations like LES. The deep learning approach to 

accelerating CFD simulations by substituting the 

turbulence closure with a neural network can provide 

significant speedups compared to traditional hybrid 

RANS-LES methods. LES is not a pure LES, as it employs 

RANS for near-wall treatment. While hybrid RANS-LES 

methods still require solving the complete set of RANS or 
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LES equations, the deep learning approach trains a 

surrogate model to directly predict the turbulent eddy 

viscosity without needing to solve the full RANS 

equations, potentially providing order-of-magnitude 

reductions in computational time. The deep learning 

framework TensorFlowFoam enables deploying the 

trained neural network directly within OpenFOAM to 

accelerate RANS simulations, allowing for end-to-end 

acceleration (Maulik et al., 2021). Since the training data 

is obtained from LES, the machine learning-based RANS 

(ML-RANS) results are close to those from LES. This 

study demonstrates that CFD simulations with machine 

learning took approximately 6.27 minutes, compared to 

44.3 minutes for simulations using the k-ω SST turbulence 

closure and 5.6 hours for LES. The ML-RANS approach 

provided a speedup of more than 50 times while 

maintaining accuracy comparable to LES in estimating 

aerodynamic pressures. 

Additionally, we emphasize the importance of 

developing improved turbulence closures to enhance 

RANS and LES simulations. Accurately modeling eddy 

viscosity is critical to achieving this goal, which can lead 

to faster and more accurate simulations of mean pressures. 

Furthermore, a better understanding of RANS simulations 

for improved turbulence closures is crucial for more 

accurate LES simulations, as RANS closures are utilized 

at the sub-grid scale. 

The study highlights the potential of developing new 

solvers and employing machine learning to enable the 

rapid investigation of new aeronautical designs to improve 

performance and achieve efficient and reliable designs. 

Finally, we suggest that the eddy viscosity may vary with 

the inflow velocity, and a dimensionless eddy viscosity 

number could be developed to account for this effect. This 

approach could treat flows at high Reynolds numbers by 

adjusting the turbulence and, hence, the eddy viscosity in 

the shear layer. 

In a different application, Sanhueza et al. (2023) 

proposed a machine-learning approach to improve the 

predictions of traditional RANS turbulence closures in 

channel flows with variable thermophysical properties 

(Sanhueza et al., 2023). The developed machine learning 

model acts as a nonlinear interpolator for DNS cases, 

reducing the modeling error on the velocity profile from 

23.4% to 4.0%. The study concludes that the proposed 

methodology is a valid alternative to improve RANS 

turbulence models in flows with substantial variations in 

their thermophysical properties without introducing prior 

modeling assumptions. This finding aligns with the 

current study, as providing high-quality data for machine 

learning training can improve the predictions of RANS 

simulations. Similarly, Liu et al. (2023) proposed a 

bounded normalization method to improve the 

extrapolation capability of an iterative machine-learning-

based RANS turbulence estimation framework. The 

improved framework demonstrated accurate prediction 

capability even when Reynolds numbers are beyond the 

training range (Liu et al., 2023). The proposed method was 

tested in channel flows and a spatially developing 

boundary layer, showing better performance than the 

conventional normalization method. 

Understanding RANS simulations to improve 

turbulence closures is crucial for achieving faster and 

more accurate simulations for estimating average 

pressures. The application of RANS models in sub-grid 

scale modeling augments the fidelity of LES simulations 

by improving the accuracy of the resolved scales. Ongoing 

research in turbulence closures is productive and has the 

potential to yield models that provide an accurate 

representation of flow physics, thereby enabling quicker 

solutions to Navier-Stokes Equations. A key aspect in 

attaining this goal is precisely predicting the eddy 

viscosity. It is worth noting that the eddy viscosity varies 

with inflow velocity, suggesting the development of a 

dimensionless eddy viscosity number. Adjusting the 

turbulence and, consequently, the eddy viscosity within 

the shear layer and wake makes it possible to handle high 

Reynolds number flows at low Reynolds numbers. 

The paper highlights the significance of precise eddy 

viscosity predictions (magnitude and distribution) for 

solving RANS equations to forecast roof pressures in wind 

effects on flat roofs. The results demonstrate that the 

machine learning-based eddy viscosity modeling 

approach improves the accuracy of RANS simulations, 

enabling efficient and dependable design of flat roofs in 

wind-prone regions. Accurate eddy viscosity prediction in 

RANS simulations is critical to improve the prediction of 

roof pressures on flat roofs. These results offer valuable 

insights for designing and engineering flat roof structures 

to optimize performance and enhance safety in real-world 

applications. 

5. CONCLUSION 

This paper applies deep learning to enhance the 

precision of RANS simulations for wind-induced 

pressures on bluff bodies. We refined the eddy viscosity 

estimation by training a neural network model on LES 

data for various bluff body geometries, including a flat-

roof building and forward/backward facing steps, 

surpassing the k-ε and k-ω SST turbulence closures. The 

ML approach closely aligns the new RANS predictions 

with LES data and experimental results, particularly in the 

separation zone and shear layer. 

The study highlights significant discrepancies in eddy 

viscosity between the ML-based model and traditional 

RANS closures. The ML model predicts higher eddy 

viscosity values near the leeward side of the roof, in the 

separation zone and wake region. In comparison, 

traditional RANS closures show lower values in this zone. 

Conversely, RANS closures exhibit higher eddy viscosity 

near the upper boundary of the computational domain 

around a low-rise building. The k-ε closure exhibits higher 

eddy viscosity near the windward side of the roof, 

resulting in faster flow reattachment, with extreme 

negative pressure near the windward side (due to a small 

tight separation bubble) and much lower negative pressure 

on the rest of the roof. 

Both conventional RANS closures failed to 

accurately predict the eddy viscosity in the PitzDaily 

problem compared to the LES reference data. These 

inaccuracies lead to significant discrepancies in the 
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velocity and pressure contours, supporting the hypothesis 

that the failure of RANS simulations to predict roof 

pressures is due to the inaccurate modeling of eddy 

viscosity in the separation bubble and shear layer. 

A sensitivity analysis on the ML model, manipulating 

eddy viscosity values, shows that the magnitude and 

distribution of eddy viscosity govern flow physics in 

RANS equations. Higher eddy viscosity increases early 

flow reattachment, while the ML model's balanced 

viscosity accurately represents flow behavior and pressure 

distributions. These findings underscore the importance of 

eddy viscosity in understanding building aerodynamics. 

The ML method significantly reduces computational 

time, converging in 6.27 minutes compared to 5.6 hours 

for LES, achieving a speedup of over 50 times. The ML 

approach followed in this study enables direct deployment 

of the trained neural network within OpenFOAM, further 

accelerating RANS simulations. 

This research reveals the limitations of traditional 

RANS closures and demonstrates the potential of ML to 

improve and accelerate numerical simulations of bluff 

body aerodynamics, as well as a tool for understanding the 

fundamental physics in fluid mechanics and 

aerodynamics. Accurate prediction of eddy viscosity in 

the separation zone and shear layer is crucial, and the 

proposed ML-based approach significantly reduces 

computational costs while enhancing accuracy. These 

advancements can be extended to solving other 

aerodynamics, fluid mechanics, and environmental 

problems. 
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