A Numerical Investigation on the Effects of Vaned Diffusers on the Aerodynamic Performance of a Low Pressure-Ratio Methane Centrifugal Compressor

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran

2 Research and Development Department, Parto Sanat Pazh (PSP) Company, Mashhad, Iran

3 Dipartimento di Ingegneria Industriale, Università di Padova, Padova, Italy

Abstract

Vaned diffusers are widely used in centrifugal compressors due to their higher pressure-recovery coefficients compared to vaneless diffusers. In this study, the effects of the diffuser vanes’ wrap angle and number of vanes on the aerodynamic performance of an industrial Methane centrifugal compressor with a pressure-ratio of 1.288 are studied using high fidelity steady-RANS numerical simulations. Three wrap angles (WA = 19.3o, 22.3o and 25.3o) and three number of vanes (NDiff. = 16, 20 and 24) are examined, while all the other geometrical and operational parameters are kept constant. Results showed that decreasing the wrap angle can enhance the choke flow rate of the compressor, with slight reduction in pressure ratio at low flow rates. However, increasing the diffuser wrap angle, intensifies the flow separation over the diffuser vanes. On average, the best aerodynamic performance of the compressor occurred at WA=22.3o. Results also showed that reducing the number of diffuser vanes enlarges the operating range of the compressor, however, the pressure ratio will be lower at the flow rates less than the design point. Conversely, higher pressure ratios will be achieved at the flow rates greater than the design flow rate. The optimal aerodynamic efficiency of the diffuser, considering both the pressure ratio and the total-to-total efficiency, was achieved when the NDiff value was set to 20.

Keywords

Main Subjects


Amiri, M., & Anbarsooz, M. (2019). Improving the energy conversion efficiency of a savonius rotor using automatic valves. Journal of Solar Energy Engineering, Transactions of the ASME, 141(3), 31010–31017. https://doi.org/10.1115/1.4042828
Anbarsooz, M. (2016). Aerodynamic performance of helical Savonius wind rotors with 30° and 45° twist angles: Experimental and numerical studies. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 230(6), 523–534. https://doi.org/10.1177/0957650916648828
Anbarsooz, M. (2020). A numerical study on wind dams: A novel approach to enhance wind potential using natural barriers. Energy Conversion and Management, 205, 112454. https://doi.org/https://doi.org/10.1016/j.enconman.2019.112454
Anbarsooz, M., Amiri, M., Erfanian, A., & Benini, E. (2022). Effects of the ring clearance on the aerodynamic performance of a CO2 centrifugal compressors annular seal: A numerical study. Tribology International, 170, 107501. https://doi.org/https://doi.org/10.1016/j.triboint.2022.107501
Anbarsooz, M., Mazloum, M., & Moghadam, D. G. (2020). Converging–diverging ducts for efficient utilization of low-grade wind energy: Numerical and experimental studies. Journal of Renewable and Sustainable Energy, 12(2), 023304. https://doi.org/10.1063/1.5142843
Anish, S., & Sitaram, N. (2009). Computational investigation of impeller-diffuser interaction in a centrifugal compressor with different types of diffusers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(2), 167–178. https://doi.org/10.1243/09576509JPE662
Anish, S., Sitaram, N., & Kim, H. D. (2013). A numerical study of the unsteady interaction effects on diffuser performance in a centrifugal compressor. Journal of Turbomachinery, 136(1). https://doi.org/10.1115/1.4023471
ANSYS, Inc. ANSYS manual, Release 19.0. (n.d.).
Ashrafi, F., & Vo, H. D. (2024). Passive flow control at impeller radial bend for stall delay in centrifugal compressors with fishtail pipe diffusers. Aerospace Science and Technology, 145, 108840. https://doi.org/10.1016/j.ast.2023.108840
Baghdadi, S. (1977). The effect of rotor blade wakes on centrifugal compressor diffuser performance-a comparative experiment. Journal of Fluids Engineering, Transactions of the ASME, 99(1), 45–50. https://doi.org/10.1115/1.3448548
Baghdadi, S., & McDonald, A. T. (1975). Performance of three vaned radial diffusers with swirling transonic flow. Journal of Fluids Engineering, Transactions of the ASME, 97(2), 155–160. https://doi.org/10.1115/1.3447238
Benini, E. (2003). Optimal navier-stokes design of compressor impellers using evolutionary computation. International Journal of Computational Fluid Dynamics, 17(5), 357–369. https://doi.org/10.1080/1061856031000099821
Benini, E., & Tourlidakis, A. (2001). Design optimization of vaned diffusers for centrifugal compressors using genetic algorithms. 15th AIAA Computational Fluid Dynamics Conference. https://doi.org/10.2514/6.2001-2583
Boncinelli, P., Ermini, M., Bartolacci, S., & Arnone, A. (2007). Impeller-diffuser interaction in centrifugal compressors: Numerical analysis of radiver test case. Journal of Propulsion and Power, 23(6), 1304–1312. https://doi.org/10.2514/1.27028
Casey, M., & Rusch, D. (2014). The matching of a vaned diffuser with a radial compressor impeller and its effect on the stage performance. Journal of Turbomachinery, 136(12). https://doi.org/10.1115/1.4028218
Cellai, A., De Lucia, M., Ferrara, G., Ferrari, L., Mengoni, C. P., & Baldassarre, L. (2003). Application of low solidity vaned diffusers to prevent rotating stall in centrifugal compressors: Experimental investigation. American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 6 B, 703–710. https://doi.org/10.1115/GT2003-38386
Clements, W. W., & Artt, D. W. (1989, June 4). The Influence of Diffuser Vane Leading Edge Geometry on the Performance of a Centrifugal Compressor. ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. https://doi.org/10.1115/89-GT-163
Cornelius, C., Biesinger, T., Galpin, P., & Braune, A. (2014). Experimental and computational analysis of a multistage axial compressor including stall prediction by steady and transient CFD methods. Journal of Turbomachinery, 136(6). https://doi.org/10.1115/1.4025583
Dawes, W. N. (1995). A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser: flow analysis. Journal of Turbomachinery, 117(2), 213–222. https://doi.org/10.1115/1.2835649
Dawes, W. N. (1992). The simulation of three-dimensional viscous flow in turbomachinery geometries using a solution-adaptive unstructured mesh methodology. Journal of Turbomachinery, 114(3), 528–537. https://doi.org/10.1115/1.2929176
Dean, R. C., & Senoo, Y. (1960). Rotating wakes in vaneless diffusers. Journal of Fluids Engineering, Transactions of the ASME, 82(3), 563–570. https://doi.org/10.1115/1.3662659
Deniz, S., Greitzer, E. M., & Cumpsty, N. A. (1998). Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers Part 2: Straight-channel diffuser. Proceedings of the ASME Turbo Expo, 1. https://doi.org/10.1115/98-GT-474
Eckardt, D. (1975). Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller. Journal of Engineering for Gas Turbines and Power, 97(3), 337–345. https://doi.org/10.1115/1.3445999
El-Askary, W. A., & Nasr, M. (2009). Performance of a bend-diffuser system: Experimental and numerical studies. Computers and Fluids, 38(1), 160–170. https://doi.org/10.1016/j.compfluid.2008.01.003
Engeda, A. (2001a). The design and performance results of simple flat plate flow solidity vaned diffusers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(1), 109–118. https://doi.org/10.1243/0957650011536471
Engeda, A. (2001b). The unsteady performance of a centrifugal compressor with different diffusers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(5), 585–599. https://doi.org/10.1243/0957650011538820
Engeda, A. (2003). Experimental and numerical investigation of the performance of a 240 kW centrifugal compressor with different diffusers. Experimental Thermal and Fluid Science, 28(1), 55–72. https://doi.org/10.1016/S0894-1777(03)00104-3
Everitt, J. N., & Spakovszky, Z. S. (2012). An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser. Journal of Turbomachinery, 135(1). https://doi.org/10.1115/1.4006533
Everitt, J. N., Spakovszky, Z. S., Rusch, D., & Schiffmann, J. (2017). The role of impeller outflow conditions on the performance of vaned diffusers. Journal of Turbomachinery, 139(4). https://doi.org/10.1115/1.4035048
Filipenco, V. G., Deniz, S., Johnston, J. M., Greitzer, E. M., & Cumpsty, N. A. (2000). Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1-discrete-passage diffuser. Journal of Turbomachinery, 122(1), 1–10. https://doi.org/10.1115/1.555418
Fujisawa, N., Inui, T., & Ohta, Y. (2019). Evolution process of diffuser stall in a centrifugal compressor with vaned diffuser. Journal of Turbomachinery, 141(4). https://doi.org/10.1115/1.4042249
Galloway, L., Rusch, D., Spence, S., Vogel, K., Hunziker, R., & Kim, S. I. (2018a). An investigation of centrifugal compressor stability enhancement using a novel vaned diffuser recirculation technique. Journal of Turbomachinery, 140(12). https://doi.org/10.1115/1.4041601
Galloway, L., Spence, S., Kim, S. I., Rusch, D., Vogel, K., & Hunziker, R. (2018b). An investigation of the stability enhancement of a centrifugal compressor stage using a porous throat diffuser. Journal of Turbomachinery, 140(1). https://doi.org/10.1115/1.4038181
Gibson, L., Galloway, L., Kim, S., & Spence, S. (2017). Assessment of turbulence model predictions for a centrifugal compressor simulation. Journal of the Global Power and Propulsion Society, 1, 2II890. https://doi.org/10.22261/2ii890
Goldberg, U., Peroomian, O., & Chakravarthy, S. (1998). A wall-distance-free K-ϵ model with enhanced near-wall treatment. Journal of Fluids Engineering, Transactions of the ASME, 120(3), 457–462. https://doi.org/10.1115/1.2820684
Hah, C., & Krain, H. (1990). Secondary flows and vortex iotion in a high-efficiency backswept impeller at design and off-design conditions. Journal of Turbomachinery, 112(1), 7–13. https://doi.org/10.1115/1.2927425
Halawa, T., Alqaradawi, M., Gadala, M. S., Shahin, I., & Badr, O. (2015). Numerical investigation of rotating stall in centrifugal compressor with vaned and vaneless diffuser. Journal of Thermal Science, 24(4), 323-333. https://doi.org/10.1007/s11630-015-0791-1
Han, G., Yang, C., Wu, S., Zhao, S., & Lu, X. (2023). The investigation of mechanisms on pipe diffuser leading edge vortex generation and development in centrifugal compressor. Applied Thermal Engineering, 219(PB), 119606. https://doi.org/10.1016/j.applthermaleng.2022.119606
Hohlweg, W. C., Direnzi, G. L., & Aungier, R. H. (1993). Comparison of conventional and low solidity vaned diffusers. American Society of Mechanical Engineers (Paper). https://doi.org/10.1115/93-gt-098
Holmes, D., & Connell, S. (1989). Solution of the 2D Navier-Stokes equations on unstructured adaptive grids. 9th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics. https://doi.org/doi:10.2514/6.1989-1932
Hu, C., Yang, X., Zhu, X., & Du, Z. (2018). Stability and structural sensitivity analysis of the turbulent flow in the narrow vaneless diffuser with mean flow method. Computers and Fluids, 177, 46–57. https://doi.org/10.1016/j.compfluid.2018.09.021
Inoue, M., & Cumpsty, N. A. (1984). Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. Journal of Engineering for Gas Turbines and Power, 106(2), 455–467. https://doi.org/10.1115/1.3239588
Issac, J. M., Sitaram, N., & Govardhan, M. (2003). Performance and wall static pressure measurements on centrifugal compressor diffusers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(5), 547–558. https://doi.org/10.1243/095765003322407593
Issac, J. M., Sitaram, N., & Govardhan, M. (2004). Effect of diffuser vane height and position on the performance of a centrifugal compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(8), 647–654. https://doi.org/10.1243/0957650042584320
Jiao, K., Sun, H., Li, X., Wu, H., Krivitzky, E., Schram, T., & Larosiliere, L. M. (2009). Numerical simulation of air flow through turbocharger compressors with dual volute design. Applied Energy, 86(11), 2494–2506. https://doi.org/10.1016/j.apenergy.2009.02.019
Johnston, J. F., & Dean, R. C. (1966). Losses an vaneless diffusers of centrifugal compressors and pumps: Analysis, experiment, and design. Journal of Engineering for Gas Turbines and Power, 88(1), 49–60. https://doi.org/10.1115/1.3678477
Kenny, D. P. (1969). A novel low-cost diffuser for high-performance centrifugal compressors. Journal of Engineering for Gas Turbines and Power, 91(1), 37–46. https://doi.org/10.1115/1.3574671
Kianifar, A., & Anbarsooz, M. (2011). Blade curve influences on the performance of Savonius rotors: Experimental and numerical. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(3), 343–350. https://doi.org/10.1177/2041296710394413
Kim, Y., Engeda, A., Aungier, R., & Amineni, N. (2002). A centrifugal compressor stage with wide flow range vaned diffusers and different inlet configurations. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216(4), 307–320. https://doi.org/10.1243/09576500260251156
Kirtley, K. (1991). An algebraic RNG-based turbulence model for three-dimensional turbomachinery flows. 29th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1991-172
Kirtley, K. R., & Beach, T. A. (1992). Deterministic blade row interactions in a centrifugal compressor stage. Journal of Turbomachinery, 114(2), 304–311. https://doi.org/10.1115/1.2929144
Koumoutsos, A., Tourlidakis, A., & Elder, R. L. (2000). Computational studies of unsteady flows in a centrifugal compressor stage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 214(6), 611–633. https://doi.org/10.1243/0957650001538146
Krain, H. (1981). A study on centrifugal impeller and diffuser flow. Journal of Engineering for Gas Turbines and Power, 103(4), 688–697. https://doi.org/10.1115/1.3230791
Li, Z., Lu, X., Zhang, Y., Han, G., Yang, C., & Zhao, S. (2018). Numerical investigation of a highly loaded centrifugal compressor stage with a tandem bladed impeller. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(3), 240–253. https://doi.org/10.1177/0957650917725406
Niveditha, P., & Gopi, B. S. (2023). Effect of different types of external guide vanes on the performance of high-pressure centrifugal compressor. Journal of Applied Fluid Mechanics, 16(12), 2556–2568. https://doi.org/10.47176/jafm.16.12.1814
Pullan, G., Young, A. M., Day, I. J., Greitzer, E. M., & Spakovszky, Z. S. (2015). Origins and structure of spike-type rotating stall. Journal of Turbomachinery, 137(5). https://doi.org/10.1115/1.4028494
Rausch, R., Yang, H., & Batina, J. (1991). Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation. 32nd Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics. https://doi.org/doi:10.2514/6.1991-1106
Reddy, T. C. S., Murty, G. V. R., Mukkavilli, P., & Reddy, D. N. (2004). Effect of the setting angle of a low-solidity vaned diffuser on the performance of a centrifugal compressor stage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(8), 637–646. https://doi.org/10.1243/0957650042584294
Rhie, C. M. (1985). A three-dimensional passage flow analysis method aimed at centrifugal impellers. Computers and Fluids, 13(4), 443–460. https://doi.org/10.1016/0045-7930(85)90013-1
Robinson, C., Casey, M., Hutchinson, B., & Steed, R. (2012). Impeller-diffuser interaction in centrifugal compressors. Proceedings of the ASME Turbo Expo. https://doi.org/10.1115/GT2012-69151
Senoo, Y., & Ishida, M. (1975). Behavior of severely asymmetric flow in a vaneless diffuser. Journal of Engineering for Gas Turbines and Power, 97(3), 375–383. https://doi.org/10.1115/1.3446012
Senoo, Y., Kinoshita, Y., & Ishida, M. (1977). Asymmetric flow in vaneless diffusers of centrifugal blowers. Journal of Fluids Engineering, Transactions of the ASME, 99(1), 104–111. https://doi.org/10.1115/1.3448501
Shum, Y. K. P., Tan, C. S., & Cumpsty, N. A. (2000). Impeller-diffuser interaction in a centrifugal compressor. Journal of Turbomachinery, 122(4), 777–786. https://doi.org/10.1115/1.1308570
Siva Reddy, T. C., Mukkavilli, P., Ramana Murty, G. V., & Reddy, D. N. (2005). Some studies on low solidity vaned diffusers of a centrifugal compressor stage. Proceedings of the ASME Turbo Expo: Vol. 6 PART B (pp. 917–925). https://doi.org/10.1115/GT2005-68972
Siva Reddy, T. C., Ramana Murty, G. V., Prasad, M. V. S. S. S. M., & Reddy, D. N. (2007). Experimental studies on the effect of impeller width on centrifugal compressor stage performance with low solidity vaned diffusers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(4), 519–533. https://doi.org/10.1243/09576509JPE373
Skoch, G. J. (2003). Experimental investigation of centrifugal compressor stabilization techniques. Journal of Turbomachinery, 125(4), 704–713. https://doi.org/10.1115/1.1624846
Skoch, G. J. (2005). Experimental investigation of diffuser hub injection to improve centrifugal compressor stability. Journal of Turbomachinery, 127(1), 107–117. https://doi.org/10.1115/1.1812779
Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical simulation of turbulent flows in centrifugal compressor stages with different radial gaps. Proceedings of the ASME Turbo Expo, 6 PART B, 1029–1038. https://doi.org/10.1115/GT2007-27376
Stewart, M. (2019). Dynamic compressors. In M. B. T. S. P. O. Stewart (Ed.), Surface Production Operations (pp. 527–653). Gulf Professional Publishing. https://doi.org/10.1016/b978-0-12-809895-0.00008-9
Sun, Z., Zheng, X., & Kawakubo, T. (2018). Experimental investigation of instability inducement and mechanism of centrifugal compressors with vaned diffuser. Applied Thermal Engineering, 133, 464–471. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.01.071
Tamaki, H. (2017). Experimental study on the effect of diffuser vane setting angle on centrifugal compressor performance. Journal of Turbomachinery, 139(6). https://doi.org/10.1115/1.4035212
Teipel, I., & Wiedermann, A. (1991). A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers. Computers and Fluids, 19(1), 21–31. https://doi.org/10.1016/0045-7930(91)90004-2
Ubben, S., & Niehuis, R. (2014). Experimental investigation of the diffuser vane clearance effect in a centrifugal compressor stage with adjustable diffuser geometry: Part II-detailed flow analysis. Journal of Turbomachinery, 137(3). https://doi.org/10.1115/1.4028298
Ubben, S., & Niehuis, R. (2015). Experimental investigation of the diffuser vane clearance effect in a centrifugal compressor stage with adjustable diffuser geometry-Part I: Compressor performance analysis. Journal of Turbomachinery, 137(3). https://doi.org/10.1115/1.4028297
Vagnoli, S., & Verstraete, T. (2015). URANS analysis of the effect of realistic inlet distortions on the stall inception of a centrifugal compressor. Computers and Fluids, 116, 192–204. https://doi.org/10.1016/j.compfluid.2015.03.015
Wang, P., Qi, M., Mousa, A. M., Ma, C., Yang, C., & Zhu, F. (2022). Numerical and experimental study on temperature and heat transfer characteristics in centrifugal compressor diffuser. SSRN Electronic Journal, 228(March), 120496. https://doi.org/10.2139/ssrn.4251111
Zhu, X., Li, G., Jiang, W., & Fu, L. (2016). Experimental and numerical investigation on application of half vane diffusers for centrifugal pump. International Communications in Heat and Mass Transfer, 79, 114–127. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.015
Ziegler, K. U., Gallus, H. E., & Niehuis, R. (2003a). A study on impeller-diffuser interaction - Part I: Influence on the performance. Journal of Turbomachinery, 125(1), 173–182. https://doi.org/10.1115/1.1516814
Ziegler, K. U., Gallus, H. E., & Niehuis, R. (2003b). A study on impeller-diffuser interaction - Part II: Detailed flow analysis. Journal of Turbomachinery, 125(1), 183–192. https://doi.org/10.1115/1.1516815