Amiri, M., & Anbarsooz, M. (2019). Improving the energy conversion efficiency of a savonius rotor using automatic valves.
Journal of Solar Energy Engineering, Transactions of the ASME,
141(3), 31010–31017.
https://doi.org/10.1115/1.4042828
Anbarsooz, M. (2016). Aerodynamic performance of helical Savonius wind rotors with 30° and 45° twist angles: Experimental and numerical studies.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
230(6), 523–534.
https://doi.org/10.1177/0957650916648828
Anbarsooz, M., Mazloum, M., & Moghadam, D. G. (2020). Converging–diverging ducts for efficient utilization of low-grade wind energy: Numerical and experimental studies.
Journal of Renewable and Sustainable Energy,
12(2), 023304.
https://doi.org/10.1063/1.5142843
Anish, S., & Sitaram, N. (2009). Computational investigation of impeller-diffuser interaction in a centrifugal compressor with different types of diffusers.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
223(2), 167–178.
https://doi.org/10.1243/09576509JPE662
Anish, S., Sitaram, N., & Kim, H. D. (2013). A numerical study of the unsteady interaction effects on diffuser performance in a centrifugal compressor.
Journal of Turbomachinery,
136(1).
https://doi.org/10.1115/1.4023471
ANSYS, Inc. ANSYS manual, Release 19.0. (n.d.).
Ashrafi, F., & Vo, H. D. (2024). Passive flow control at impeller radial bend for stall delay in centrifugal compressors with fishtail pipe diffusers.
Aerospace Science and Technology,
145, 108840.
https://doi.org/10.1016/j.ast.2023.108840
Baghdadi, S. (1977). The effect of rotor blade wakes on centrifugal compressor diffuser performance-a comparative experiment.
Journal of Fluids Engineering, Transactions of the ASME,
99(1), 45–50.
https://doi.org/10.1115/1.3448548
Baghdadi, S., & McDonald, A. T. (1975). Performance of three vaned radial diffusers with swirling transonic flow.
Journal of Fluids Engineering, Transactions of the ASME,
97(2), 155–160.
https://doi.org/10.1115/1.3447238
Benini, E. (2003). Optimal navier-stokes design of compressor impellers using evolutionary computation.
International Journal of Computational Fluid Dynamics,
17(5), 357–369.
https://doi.org/10.1080/1061856031000099821
Benini, E., & Tourlidakis, A. (2001).
Design optimization of vaned diffusers for centrifugal compressors using genetic algorithms. 15th AIAA Computational Fluid Dynamics Conference.
https://doi.org/10.2514/6.2001-2583
Boncinelli, P., Ermini, M., Bartolacci, S., & Arnone, A. (2007). Impeller-diffuser interaction in centrifugal compressors: Numerical analysis of radiver test case.
Journal of Propulsion and Power,
23(6), 1304–1312.
https://doi.org/10.2514/1.27028
Casey, M., & Rusch, D. (2014). The matching of a vaned diffuser with a radial compressor impeller and its effect on the stage performance.
Journal of Turbomachinery,
136(12).
https://doi.org/10.1115/1.4028218
Cellai, A., De Lucia, M., Ferrara, G., Ferrari, L., Mengoni, C. P., & Baldassarre, L. (2003). Application of low solidity vaned diffusers to prevent rotating stall in centrifugal compressors: Experimental investigation.
American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI,
6 B, 703–710.
https://doi.org/10.1115/GT2003-38386
Clements, W. W., & Artt, D. W. (1989, June 4).
The Influence of Diffuser Vane Leading Edge Geometry on the Performance of a Centrifugal Compressor. ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition.
https://doi.org/10.1115/89-GT-163
Cornelius, C., Biesinger, T., Galpin, P., & Braune, A. (2014). Experimental and computational analysis of a multistage axial compressor including stall prediction by steady and transient CFD methods.
Journal of Turbomachinery,
136(6).
https://doi.org/10.1115/1.4025583
Dawes, W. N. (1995). A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser: flow analysis.
Journal of Turbomachinery,
117(2), 213–222.
https://doi.org/10.1115/1.2835649
Dawes, W. N. (1992). The simulation of three-dimensional viscous flow in turbomachinery geometries using a solution-adaptive unstructured mesh methodology.
Journal of Turbomachinery,
114(3), 528–537.
https://doi.org/10.1115/1.2929176
Dean, R. C., & Senoo, Y. (1960). Rotating wakes in vaneless diffusers.
Journal of Fluids Engineering, Transactions of the ASME,
82(3), 563–570.
https://doi.org/10.1115/1.3662659
Deniz, S., Greitzer, E. M., & Cumpsty, N. A. (1998).
Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers Part 2: Straight-channel diffuser. Proceedings of the ASME Turbo Expo, 1.
https://doi.org/10.1115/98-GT-474
Eckardt, D. (1975). Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller.
Journal of Engineering for Gas Turbines and Power,
97(3), 337–345.
https://doi.org/10.1115/1.3445999
Engeda, A. (2001a). The design and performance results of simple flat plate flow solidity vaned diffusers.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
215(1), 109–118.
https://doi.org/10.1243/0957650011536471
Engeda, A. (2001b). The unsteady performance of a centrifugal compressor with different diffusers.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
215(5), 585–599.
https://doi.org/10.1243/0957650011538820
Engeda, A. (2003). Experimental and numerical investigation of the performance of a 240 kW centrifugal compressor with different diffusers.
Experimental Thermal and Fluid Science,
28(1), 55–72.
https://doi.org/10.1016/S0894-1777(03)00104-3
Everitt, J. N., & Spakovszky, Z. S. (2012). An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser.
Journal of Turbomachinery,
135(1).
https://doi.org/10.1115/1.4006533
Everitt, J. N., Spakovszky, Z. S., Rusch, D., & Schiffmann, J. (2017). The role of impeller outflow conditions on the performance of vaned diffusers.
Journal of Turbomachinery,
139(4).
https://doi.org/10.1115/1.4035048
Filipenco, V. G., Deniz, S., Johnston, J. M., Greitzer, E. M., & Cumpsty, N. A. (2000). Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1-discrete-passage diffuser.
Journal of Turbomachinery,
122(1), 1–10.
https://doi.org/10.1115/1.555418
Fujisawa, N., Inui, T., & Ohta, Y. (2019). Evolution process of diffuser stall in a centrifugal compressor with vaned diffuser.
Journal of Turbomachinery,
141(4).
https://doi.org/10.1115/1.4042249
Galloway, L., Rusch, D., Spence, S., Vogel, K., Hunziker, R., & Kim, S. I. (2018a). An investigation of centrifugal compressor stability enhancement using a novel vaned diffuser recirculation technique.
Journal of Turbomachinery,
140(12).
https://doi.org/10.1115/1.4041601
Galloway, L., Spence, S., Kim, S. I., Rusch, D., Vogel, K., & Hunziker, R. (2018b). An investigation of the stability enhancement of a centrifugal compressor stage using a porous throat diffuser.
Journal of Turbomachinery,
140(1).
https://doi.org/10.1115/1.4038181
Gibson, L., Galloway, L., Kim, S., & Spence, S. (2017). Assessment of turbulence model predictions for a centrifugal compressor simulation.
Journal of the Global Power and Propulsion Society,
1, 2II890.
https://doi.org/10.22261/2ii890
Goldberg, U., Peroomian, O., & Chakravarthy, S. (1998). A wall-distance-free K-ϵ model with enhanced near-wall treatment.
Journal of Fluids Engineering, Transactions of the ASME,
120(3), 457–462.
https://doi.org/10.1115/1.2820684
Hah, C., & Krain, H. (1990). Secondary flows and vortex iotion in a high-efficiency backswept impeller at design and off-design conditions.
Journal of Turbomachinery,
112(1), 7–13.
https://doi.org/10.1115/1.2927425
Halawa, T., Alqaradawi, M., Gadala, M. S., Shahin, I., & Badr, O. (2015). Numerical investigation of rotating stall in centrifugal compressor with vaned and vaneless diffuser.
Journal of Thermal Science,
24(4), 323-333.
https://doi.org/10.1007/s11630-015-0791-1
Han, G., Yang, C., Wu, S., Zhao, S., & Lu, X. (2023). The investigation of mechanisms on pipe diffuser leading edge vortex generation and development in centrifugal compressor.
Applied Thermal Engineering,
219(PB), 119606.
https://doi.org/10.1016/j.applthermaleng.2022.119606
Hohlweg, W. C., Direnzi, G. L., & Aungier, R. H. (1993). Comparison of conventional and low solidity vaned diffusers.
American Society of Mechanical Engineers (Paper).
https://doi.org/10.1115/93-gt-098
Holmes, D., & Connell, S. (1989).
Solution of the 2D Navier-Stokes equations on unstructured adaptive grids. 9th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/doi:10.2514/6.1989-1932
Hu, C., Yang, X., Zhu, X., & Du, Z. (2018). Stability and structural sensitivity analysis of the turbulent flow in the narrow vaneless diffuser with mean flow method.
Computers and Fluids,
177, 46–57.
https://doi.org/10.1016/j.compfluid.2018.09.021
Inoue, M., & Cumpsty, N. A. (1984). Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers.
Journal of Engineering for Gas Turbines and Power,
106(2), 455–467.
https://doi.org/10.1115/1.3239588
Issac, J. M., Sitaram, N., & Govardhan, M. (2003). Performance and wall static pressure measurements on centrifugal compressor diffusers.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
217(5), 547–558.
https://doi.org/10.1243/095765003322407593
Issac, J. M., Sitaram, N., & Govardhan, M. (2004). Effect of diffuser vane height and position on the performance of a centrifugal compressor.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
218(8), 647–654.
https://doi.org/10.1243/0957650042584320
Jiao, K., Sun, H., Li, X., Wu, H., Krivitzky, E., Schram, T., & Larosiliere, L. M. (2009). Numerical simulation of air flow through turbocharger compressors with dual volute design.
Applied Energy,
86(11), 2494–2506.
https://doi.org/10.1016/j.apenergy.2009.02.019
Johnston, J. F., & Dean, R. C. (1966). Losses an vaneless diffusers of centrifugal compressors and pumps: Analysis, experiment, and design.
Journal of Engineering for Gas Turbines and Power,
88(1), 49–60.
https://doi.org/10.1115/1.3678477
Kenny, D. P. (1969). A novel low-cost diffuser for high-performance centrifugal compressors.
Journal of Engineering for Gas Turbines and Power,
91(1), 37–46.
https://doi.org/10.1115/1.3574671
Kianifar, A., & Anbarsooz, M. (2011). Blade curve influences on the performance of Savonius rotors: Experimental and numerical.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
225(3), 343–350.
https://doi.org/10.1177/2041296710394413
Kim, Y., Engeda, A., Aungier, R., & Amineni, N. (2002). A centrifugal compressor stage with wide flow range vaned diffusers and different inlet configurations.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
216(4), 307–320.
https://doi.org/10.1243/09576500260251156
Kirtley, K. (1991).
An algebraic RNG-based turbulence model for three-dimensional turbomachinery flows. 29th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.1991-172
Kirtley, K. R., & Beach, T. A. (1992). Deterministic blade row interactions in a centrifugal compressor stage.
Journal of Turbomachinery,
114(2), 304–311.
https://doi.org/10.1115/1.2929144
Koumoutsos, A., Tourlidakis, A., & Elder, R. L. (2000). Computational studies of unsteady flows in a centrifugal compressor stage.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
214(6), 611–633.
https://doi.org/10.1243/0957650001538146
Krain, H. (1981). A study on centrifugal impeller and diffuser flow.
Journal of Engineering for Gas Turbines and Power,
103(4), 688–697.
https://doi.org/10.1115/1.3230791
Li, Z., Lu, X., Zhang, Y., Han, G., Yang, C., & Zhao, S. (2018). Numerical investigation of a highly loaded centrifugal compressor stage with a tandem bladed impeller.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
232(3), 240–253.
https://doi.org/10.1177/0957650917725406
Niveditha, P., & Gopi, B. S. (2023). Effect of different types of external guide vanes on the performance of high-pressure centrifugal compressor.
Journal of Applied Fluid Mechanics,
16(12), 2556–2568.
https://doi.org/10.47176/jafm.16.12.1814
Pullan, G., Young, A. M., Day, I. J., Greitzer, E. M., & Spakovszky, Z. S. (2015). Origins and structure of spike-type rotating stall.
Journal of Turbomachinery,
137(5).
https://doi.org/10.1115/1.4028494
Rausch, R., Yang, H., & Batina, J. (1991).
Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation. 32nd Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics.
https://doi.org/doi:10.2514/6.1991-1106
Reddy, T. C. S., Murty, G. V. R., Mukkavilli, P., & Reddy, D. N. (2004). Effect of the setting angle of a low-solidity vaned diffuser on the performance of a centrifugal compressor stage.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
218(8), 637–646.
https://doi.org/10.1243/0957650042584294
Robinson, C., Casey, M., Hutchinson, B., & Steed, R. (2012).
Impeller-diffuser interaction in centrifugal compressors. Proceedings of the ASME Turbo Expo.
https://doi.org/10.1115/GT2012-69151
Senoo, Y., & Ishida, M. (1975). Behavior of severely asymmetric flow in a vaneless diffuser.
Journal of Engineering for Gas Turbines and Power,
97(3), 375–383.
https://doi.org/10.1115/1.3446012
Senoo, Y., Kinoshita, Y., & Ishida, M. (1977). Asymmetric flow in vaneless diffusers of centrifugal blowers.
Journal of Fluids Engineering, Transactions of the ASME,
99(1), 104–111.
https://doi.org/10.1115/1.3448501
Shum, Y. K. P., Tan, C. S., & Cumpsty, N. A. (2000). Impeller-diffuser interaction in a centrifugal compressor.
Journal of Turbomachinery,
122(4), 777–786.
https://doi.org/10.1115/1.1308570
Siva Reddy, T. C., Mukkavilli, P., Ramana Murty, G. V., & Reddy, D. N. (2005).
Some studies on low solidity vaned diffusers of a centrifugal compressor stage. Proceedings of the ASME Turbo Expo: Vol. 6 PART B (pp. 917–925).
https://doi.org/10.1115/GT2005-68972
Siva Reddy, T. C., Ramana Murty, G. V., Prasad, M. V. S. S. S. M., & Reddy, D. N. (2007). Experimental studies on the effect of impeller width on centrifugal compressor stage performance with low solidity vaned diffusers.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
221(4), 519–533.
https://doi.org/10.1243/09576509JPE373
Skoch, G. J. (2003). Experimental investigation of centrifugal compressor stabilization techniques.
Journal of Turbomachinery,
125(4), 704–713.
https://doi.org/10.1115/1.1624846
Skoch, G. J. (2005). Experimental investigation of diffuser hub injection to improve centrifugal compressor stability.
Journal of Turbomachinery,
127(1), 107–117.
https://doi.org/10.1115/1.1812779
Smirnov, P. E., Hansen, T., & Menter, F. R. (2007).
Numerical simulation of turbulent flows in centrifugal compressor stages with different radial gaps. Proceedings of the ASME Turbo Expo, 6 PART B, 1029–1038.
https://doi.org/10.1115/GT2007-27376
Tamaki, H. (2017). Experimental study on the effect of diffuser vane setting angle on centrifugal compressor performance.
Journal of Turbomachinery,
139(6).
https://doi.org/10.1115/1.4035212
Ubben, S., & Niehuis, R. (2014). Experimental investigation of the diffuser vane clearance effect in a centrifugal compressor stage with adjustable diffuser geometry: Part II-detailed flow analysis.
Journal of Turbomachinery,
137(3).
https://doi.org/10.1115/1.4028298
Ubben, S., & Niehuis, R. (2015). Experimental investigation of the diffuser vane clearance effect in a centrifugal compressor stage with adjustable diffuser geometry-Part I: Compressor performance analysis.
Journal of Turbomachinery,
137(3).
https://doi.org/10.1115/1.4028297
Wang, P., Qi, M., Mousa, A. M., Ma, C., Yang, C., & Zhu, F. (2022). Numerical and experimental study on temperature and heat transfer characteristics in centrifugal compressor diffuser.
SSRN Electronic Journal,
228(March), 120496.
https://doi.org/10.2139/ssrn.4251111
Ziegler, K. U., Gallus, H. E., & Niehuis, R. (2003a). A study on impeller-diffuser interaction - Part I: Influence on the performance.
Journal of Turbomachinery,
125(1), 173–182.
https://doi.org/10.1115/1.1516814
Ziegler, K. U., Gallus, H. E., & Niehuis, R. (2003b). A study on impeller-diffuser interaction - Part II: Detailed flow analysis.
Journal of Turbomachinery,
125(1), 183–192.
https://doi.org/10.1115/1.1516815