Sweep Optimization to Reduce Aerodynamic Loss in a Transonic Axial Compressor with Upstream Boundary Layer Ingestion

Document Type : Regular Article

Authors

1 Research Institute of Aero-Engine, Beihang University, Beijing, 100191, China

2 National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing, 100191, China

3 Collaborative Innovation Center for Advanced Aero-Engine, Beihang University, Beijing, 100191, China

4 School of Energy and Power Engineering, Beihang University, Beijing, 100191, China

5 Key Laboratory of Fluid and Power Machinery, Xihua University, Chengdu, 610039, China

Abstract

The aerodynamic performance of axial compressor rotors is negatively affected by the ingestion of boundary layer fluids upstream. As the boundary layer becomes thicker, the blade tip load increases and the local loss is aggravated, especially under off-design operating conditions. The major objective of this research is to evaluate the potential for novel blade sweep designs that can tolerate the ingested low-momentum boundary layer fluids. An optimization design approach using a surrogate model and genetic algorithm is employed. By altering the blade stacking line, the optimized sweep design is obtained. The flow mechanisms that enable the performance of the compressor rotor to be improved are fully analyzed, and the findings indicate that the aerodynamic advantages primarily stem from two key aspects. First, in the tip region, the blade loads are decreased at various chordwise locations and the interaction of the tip leakage flow with the mainstream is alleviated. As a result, the loss near the tip is reduced. Second, the blade sweep design alters the distribution of shock intensity across the spanwise direction, leading to a decrease in shock wave intensity in the mid-span region. This is beneficial in reducing the shock wave/boundary layer interaction strength at the trailing edge of the blade airfoil. Overall, after the sweep design has been optimized to ingest the upstream boundary layer, the compressor rotor experiences a 0.8% improvement in adiabatic efficiency compared with the baseline rotor, while preserving the total pressure ratio and stall margin. Additionally, the redesigned compressor retains the overall performance level under clean inlet conditions. This research provides a potentially effective blade sweep optimization design strategy that allows transonic compressor rotors to tolerate low-momentum upstream boundary layer incoming flows.

Keywords

Main Subjects


Benini, E., & Biollo, R. (2007). Aerodynamics of swept and leaned transonic compressor rotors. Applied Energy, 84(10), 1012-1027. https://doi.org/10.1016/j.apenergy.2007.03.003
Bergner, J. R., Kablitz, S., Hennecke, D. K., Passrucker, H., & Steinhardt, E. (2005, June 6-9). Influence of sweep on the 3D shock structure in an axial transonic compressor. Proceedings of ASME Turbo Expo 2005, Reno-Tahoe, Nevada, USA. https://doi.org/10.1115/GT2005-68835
Blaha, C., Kablitz, S., Hennecke, D. K., Schmidt-Eisenlohr, U., Pirker, K., & Haselhoff, S. (2000, May 8-11). Numerical investigation of the flow in an aft-swept transonic compressor rotor. Proceedings of ASME Turbo Expo 2000, Munich, Germany. https://doi.org/10.1115/2000-GT-0490
Brandt, H., Fottner, L., Saathoff, H., & Stark, U. (2002, June 3-6). Effects of the inlet flow conditions on the tip clearance flow of an isolated compressor rotor. Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands. https://doi.org/10.1115/GT2002-30639
Brossman, J. R., Ball, P. R., Smith, N. R., Methel, J. C., & Key, N. L. (2014). Sensitivity of multistage compressor performance to inlet boundary conditions. AIAA Journal of Propulsion and Power, 30(2), 407-415. https://doi.org/10.2514/1.B34742
Castillo Pardo, A., & Hall, C. A. (2021). Aerodynamics of boundary layer ingesting fuselage fans. ASME Journal of Turbomachinery143(4), 041007. https://doi.org/10.1115/1.4049918
Denton, J. D. (1993). Loss mechanisms in turbomachines. ASME Journal of Turbomachinery, 115(4), 621-654. https://doi.org/10.1115/1.2929299
Gil-Prieto, D., Zachos, P. K., MacManus, D. G., & McLelland, G. (2019). Unsteady characteristics of s-duct intake flow distortion. Aerospace Science and Technology, 84, 938-952. https://doi.org/10.1016/j.ast.2018.10.020
Govardhan, M., Krishna Kumar, O. G., & Sitaram, N. (2007). Investigations on low speed axial compressor with forward and backward sweep. Journal of Thermal Science, 16, 121-133. https://doi.org/10.1007/s11630-007-0121-3
Gümmer, V., Wenger, U., & Kau, H. P. (2001). Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors. ASME Journal of Turbomachinery123(1), 40-48. https://doi.org/10.1115/1.1330268
Hah, C., Puterbaugh, S. L., & Wadia, A. R. (1998, June 2-5). Control of shock structure and secondary flow field inside transonic compressor rotors through aerodynamic sweep. Proceedings of ASME Turbo Expo 1998, Stockholm, Sweden. https://doi.org/10.1115/98-GT-561
He, X., Fang, Z., Rigas, G., & Vahdati, M. (2021). Spectral proper orthogonal decomposition of compressor tip leakage flow. Physics of Fluids, 33(10), 105105. https://doi.org/10.1063/5.0065929
Hu, J., Wang, R., & Huang, D. (2019). Improvement of performance and stability of a single-stage transonic axial compressor using a combined flow control approach. Aerospace Science and Technology, 86, 283-295. https://doi.org/10.1016/j.ast.2018.12.033
Huang, S., Zhou, C., Yang, C., Zhao, S., Wang, M., & Lu, X. (2020, September 21-25). Effect of backward sweep on aerodynamic performance of a 1.5-stage highly loaded axial compressor. Proceedings of ASME Turbo Expo 2020, Virtual, Online. https://doi.org/10.1115/GT2020-14262
Hunter, I. H., & Cumpsty, N. A. (1982). Casing wall boundary-layer development through an isolated compressor rotor. ASME Journal of Engineering for Gas Turbines and Power, 104(4), 805-817. https://doi.org/10.1115/1.3227347
Khalfallah, S., Ghenaiet, A., Benini, E., & Bedon, G. (2015). Surrogate-based shape optimization of stall margin and efficiency of a centrifugal compressor. Journal of Propulsion and Power31(6), 1607-1620. https://doi.org/10.2514/1.B35543
Li, C., Bin, G., Li, J., Yang, P., & Wang, W. (2022). Influence of inlet distortion on the wear of aero-compressor blades. International Journal of Mechanical Sciences, 230, 107551. https://doi.org/10.1016/j.ijmecsci.2022.107551
Li, F., Li, J., Dong, X., Sun, D., & Sun, X. (2017). Influence of SPS casing treatment on axial flow compressor subjected to radial pressure distortion. Chinese Journal of Aeronautics, 30(2), 685-697. https://doi.org/10.1016/j.cja.2016.10.023
Li, H., Lu, H., & Li, Q. (2024). Numerical investigations of the influences of valve spool structure on the eccentric jet flow characteristic in high-pressure angle valves. Energy, 298, 131378. https://doi.org/10.1016/j.energy.2024.131378
Li, J., Du, J., Geng, S., Li, F., & Zhang, H. (2020). Tip air injection to extend stall margin of multi-stage axial flow compressor with inlet radial distortion. Aerospace Science and Technology, 96, 105554. https://doi.org/10.1016/j.ast.2019.105554
Li, Z., Zhang, Y., Pan, T., Lu, H., Wu, M., & Zhang, J. (2018). Optimization strategy for a single-stage axisymmetric hub endwall in axial compressor by a modified transonic area rule. Aerospace Science and Technology, 82, 199-209. https://doi.org/10.1016/j.ast.2018.08.039
Lu, H., Li, Q., & Pan, T. (2018). Optimization strategy for an axial-flow compressor using a region-segmentation combining surrogate model. Journal of Aerospace Engineering, 31(5), 04018076. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000907
Ma, H., & Li, B. (2008). Effects of axial non-uniform tip clearances on aerodynamic performance of a transonic axial compressor. Journal of Thermal Science, 17(4), 331-336. https://doi.org/10.1007/s11630-008-0331-3
Okui, H., Verstraete, T., Van den Braembussche, R. A., & Alsalihi, Z. (2013). Three-dimensional design and optimization of a transonic rotor in axial flow compressors. ASME Journal of Turbomachinery135(3), 031009. https://doi.org/10.1115/1.4006668
Passrucker, H., Engber, M., Kablitz, S., & Hennecke, D. K. (2003). Effect of forward sweep in a transonic compressor rotor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(4), 357-365. https://doi.org/10.1243/095765003322315414
Sasaki, T., & Breugelmans, F. (1998). Comparison of sweep and dihedral effects on compressor cascade performance. ASME Journal of Turbomachinery, 120(3), 454-463. https://doi.org/10.1115/1.2841738
Scott McNulty, G., Decker, J. J., Beacher, B. F., & Khalid, S. A. (2004). The impact of forward swept rotors on tip clearance flows in subsonic axial compressors. ASME Journal of Turbomachinery, 126(4), 445-454. https://doi.org/10.1115/1.1773852
Song, P., Sun, J., & Wang, K. (2014). Axial flow compressor blade optimization through flexible shape tuning by means of cooperative co-evolution algorithm and adaptive surrogate model. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 228(7), 782-798. https://doi.org/10.1177/0957650914541647
Strazisar, A. J., Wood, J. R., Hathaway, M. D., &Suder, K. L. (1989). Laser anemometer measurements in a transonic axial-flow fan rotor. NASA Technical Report No. 2879.
Sun, S., Wang, S., Chen, S., Tao, C., Cai, L., & Chen, J. (2019). The impact of various forward sweep angles on the performance of an ultra-high-load low-reaction transonic compressor rotor. Applied Thermal Engineering, 150, 953-966. https://doi.org/10.1016/j.applthermaleng.2019.01.045
Wagner, J. H., Dring, R. P., & Joslyn, H. D. (1985a). Inlet boundary layer effects in an axial compressor rotor: Part I—Blade-to-Blade effects. ASME Journal of Engineering for Gas Turbines and Power, 107(2), 374-380. https://doi.org/10.1115/1.3239734
Wagner, J. H., Dring, R. P., & Joslyn, H. D. (1985b). Inlet boundary layer effects in an axial compressor rotor: part II—throughflow effects. ASME Journal of Engineering for Gas Turbines and Power, 107(2), 381-386. https://doi.org/10.1115/1.3239735
Wang, H., Mao, X., Liu, B., Zhang, B., & Yang, Z. (2023). Effect investigation of single-slotted and double-slotted configurations on the corner separation and aerodynamic performance in a high-load compressor cascade. Aerospace Science and Technology, 135, 108203. https://doi.org/10.1016/j.ast.2023.108203
Zhang, C., Hu, J., & Wang, Z. (2014). Investigations on the effects of inflow condition and tip clearance size to the performance of a compressor rotor. ASME Journal of Engineering for Gas Turbines and Power, 136(12), 122608.  https://doi.org/10.1115/1.4027906
Zheng, R., Xiang, J., & Sun, J. (2010, June 14-18). Blade geometry optimization for axial flow compressor. Proceedings of ASME Turbo Expo 2010, Glasgow, UK. https://doi.org/10.1115/GT2010-22229