Bektaş, M., Güler, M. A., & Kurtulus, D. F. (2020). One-way FSI analysis of bio-inspired flapping wings.
International Journal of Sustainable Aviation (IJSA), 6(3).
https://doi.10.1504/IJSA.2020.10034459
Comez, F. Y., Sengil, N., & Kurtulus, D. F. (2024). Three-dimensional flow evaluation of monarch butterfly wing.
Progress in Computational Fluid Dynamics, an International Journal, 24(4), 191-203.
https://doi.org/10.1504/PCFD.2023.10058561
Dong, Y., Song, B., Xue, D., Li, Y., & Yang, W. (2022). Numerical study of the aerodynamics of a hovering hummingbird’s wing with dynamic morphing.
International Journal of Aerospace Engineering,
2022(1), 5433184.
https://doi.org/10.1155/2022/5433184.
Dwivedi, Y. D., Sudhir, S. Y. B., Sunil, B., Moorthy, C. H. V. K. N. S. N., & Allamraju, K. V. (2022). Numerical study of bio-inspired corrugated airfoil geometry in a forward flight at a low Reynolds number.
WSEAS Transactions on Fluid Mechanics,
17, 119-127.
https://doi.org/10.37394/232013.2022.17.12
Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, stream, and convergence zones in turbulent flows. Report CTR-S88, Center for Turbulence Research.
James, J., Iyer, V., Chukewad, Y., Gollakota, S., & Fuller, S. B. (2018).
Liftoff of a 190 mg laser powered aerial vehicle: the lightest wireless robot to fly. IEEE International Conference on Robotics and Automation (ICRA), IEEE.
https://doi.10.1109/ICRA.2018.8460582.
Kurtulus, D. F. (2022). Critical angle and fundamental frequency of symmetric airfoils at low reynolds numbers. Journal of Applied Fluid Mechanics, 15(3), 723-735.
https://doi.org/10.47176/jafm.15.03.33099
Kurtulus, D. F., Farcy, A., & Alemdaroglu, N. (2005, 10-13 Jan). Unsteady aerodynamics of flapping airfoil in hovering flight at low reynolds numbers. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA.
Lau, E. M., Kumar, D., Chiang, C. H., Zhang, J. D., Huang, W. X., & Khare, V. (2020).
Pressure distribution of a deformable composite flapping wing. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 113790M.
https://doi.org/10.1117/12.2558461
Ozaki, T., & Hamaguchi, K. (2018). Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration.
Robotics and Automation Letters, 3, 4217–4224.
https://doi.10.1109/LRA.2018.2863104
Quinn Andrew, O. (2022). Efficacy of Flapping-wing Flight Via Dual Piezoelectric Actuation (Publication No. 11096) [M.Sc. Thesis, Rochester Institute of Technology]. Digital Institutional Repository.
https://repository.rit.edu/theses/11096.
Senol, M. G., Arikan, K. B, & Kurtulus, D. F. (2017, 9-13 January).
Experimental and numerical results of a flapping wing four bar mechanism. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, AIAA 2017-0498.
https://doi.org/10.2514/6.2017-0498.
Shyy, W., Aono, H., Kang, C., & Liu, H. (2013). An introduction to flapping wing aerodynamics. Cambridge University Press, ISBN 978-1-107-03726-7 Hardback.
Wu, P., & Ifju, P. (2010, 12-15 April).
Experimental methodology for flapping wing structure optimization in hovering flight of micro air vehicles, AIAA 2010-2709, 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th, Orlando, Florida.
https://doi.org/10.2514/6.2010-2709.
Yang, X., Song, B., Yang, W., Xue, D., Pei, Y., & Lang, X. (2022). Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods.
Chinese Journal of Aeronautics, 35(6), 63–76.
https://doi.org/10.1016/j.cja.2021.09.020
Zou, Y., Zhang, W., Ke, X., Lou, X., & Zhou, S. (2017). The design, and microfabrication of a sub 100 mg insect-scale flapping-wing robot.
Micro & Nano Letters. 12, 297–300.
https://doi.org/10.1049/mnl.2016.0687