Celata, G. P., D’Annibale, F., Di Marco, P., Memoli, G., & Tomiyama, A. (2007). Measurements of rising velocity of a small bubble in a stagnant fluid in one- and two-component systems. 
Experimental Thermal and Fluid Science,
 31(6), 609-623. 
https://doi.org/10.1016/j.expthermflusci.2006.06.006
                                                                                                                 Chen, Y., Tu, C., Yang, Q., Wang, Y., & Bao, F. (2021). Dynamic behavior of a deformable bubble rising near a vertical wire-mesh in the quiescent water. 
Experimental Thermal Fluid Science,
 120, 110235. 
https://doi.org/10.1016/j.expthermflusci.2020.110235
                                                                                                                 Choi, H., Lee, J., & Park, H. (2019). Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number. 
Physics of Fluids,
 31(1), 015102. 
https://doi.org/10.1063/1.5054039
                                                                                                                 Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C., & Wang, D. (2024a). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. 
Journal of Cleaner Production,
 434, 140186. 
https://doi.org/10.1016/j.jclepro.2023.140186
                                                                                                                 Dai, B., Wang, Q., Liu, S., Zhang, J., Wang, Y., Kong, Z., Wang, D. (2024b). Multi-objective optimization analysis of combined heating and cooling transcritical CO2 system integrated with mechanical subcooling utilizing hydrocarbon mixture based on machine learning.
 Energy Conversion Management,
 301, 118057. 
https://doi.org/10.1016/j.enconman.2023.118057
                                                                                                                 Dai, B., Wu, T., Liu, S., Qi, H., Zhang, P., Wang, D., & Wang, X. (2024c). Flow boiling heat transfer characteristics of zeotropic mixture CO2/R152a with large temperature glide in a 2 mm horizontal tube.
 International Journal of Heat Mass Transfer,
 218, 124779. 
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124779
                                                                                                                 de Vries, A. W. G. (2001). Path and wake of a rising bubble. University of Twente. Enschede, The Netherlands.
                                                                                                                de Vries, A. W. G., Biesheuvel, A., & Wijngaarden, L. v. (2002). Notes on the path and wake of a gas bubble rising in pure water. 
International Journal of Multiphase Flow,
 28(11), 1823-1835. 
https://doi.org/10.1016/S0301-9322(02)00036-8
                                                                                                                 Gong, Z., Cai, J., & Lu, Q. (2020). Experiment characterization of the influence of wall wettability and inclination angle on bubble rising process using PIV. 
European Journal of Mechanics / B Fluids,
 81, 62-75. 
https://doi.org/10.1016/j.euromechflu.2020.01.005
                                                                                                                 Jeong, H., & Park, H. (2015). Near-wall rising behaviour of a deformable bubble at high Reynolds number. 
Journal of Fluid Mechanics,
 771, 564-594. 
https://doi.org/10.1017/jfm.2015.191
                                                                                                                                                                                                                                 Krishna, R., Urseanu, M. I., Baten, J. M. V., & Ellenberger, J. (1999). Wall effects on the rise of single gas bubbles in liquids. 
International Communications in Heat Mass Transfer,
 26(6), 781-790. 
https://doi.org/10.1016/S0735-1933(99)00066-4
                                                                                                                 Lee, J. H., Kim, H., Lee, J., & Park, H. (2021). Scale-wise analysis of upward turbulent bubbly flows: An experimental study. 
Physics of Fluids,
 33, 053316. 
https://doi.org/10.1063/5.0048199
                                                                                                                                                                                                                                 Lee, J., & Park, H. (2022). Flow induced by the single-bubble chain depending on the bubble release frequency. 
Physics of Fluids,
 34, 033312. 
https://doi.org/10.1063/5.0083281
                                                                                                                                                                                                                                                                                                                                                 Métrailler, D., Reboux, S., & Lakehal, D. (2017). Near-wall turbulence-bubbles interactions in a channel flow at Re τ = 400: A DNS investigation. 
Nuclear Engineering and Design,
 3213, 180-189. 
https://doi.org/10.1016/j.nucengdes.2016.10.055
                                                                                                                                                                                                                                 Sanada, T., Watanabe, M., Fukano, T., & Kariyasaki, A. (2005). Behavior of a single coherent gas bubble chain and surrounding liquid jet flow structure. 
Chemical Engineering Science,
 60(17), 4886-4900. 
https://doi.org/10.1016/j.ces.2005.04.010
                                                                                                                                                                                                                                                                                                                                                 Wen, X., Liu, J., Li, Z., Peng, D., Zhou, W., Kim, K. C., & Liu, Y. (2020). Jet impingement using an adjustable spreading-angle sweeping jet.
 Aerospace Science Technology,
 105, 105956. 
https://doi.org/10.1016/j.ast.2020.105956
                                                                                                                 Yan, H. J., Zhang, H. Y., Zhang, H. M., Liao, Y. X., & Liu, L. (2023). Three-dimensional dynamics of a single bubble rising near a vertical wall:Paths and wakes. 
Petroleum Science,
 20(3), 1874-1884. 
https://doi.org/10.1016/j.petsci.2023.02.014
                                                                                                                 Yan, H., Zhang, H., Liao, Y., Zhang, H., Zhou, P., & Liu, L. (2022). A single bubble rising in the vicinity of a vertical wall: A numerical study based on volume of fluid method. 
Ocean Engineering,
 263, 112379. 
https://doi.org/10.1016/j.oceaneng.2022.112379
                                                                                                                 Yin, J., Zhang, Y., Zhu, J., Lv, L., & Tian, L. (2021). An experimental and numerical study on the dynamical behaviors of the rebound cavitation bubble near the solid wall. 
International Journal of Heat Mass Transfer,
 177(10), 121525. 
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121525
                                                                                                                 Yu, Q., Ma, X., Wang, G., Zhao, J., & Wang, D. (2020). Thermodynamic Effect of Single Bubble Near a Rigid Wall. 
Ultrasonics Sonochemistry, 
105396. 
https://doi.org/10.1016/j.ultsonch.2020.105396
                                                                                                                                                                                                                                 Zaruba, A., Lucas, D., Prasser, H.-M., & Höhne, T. (2007). Bubble-wall interactions in a vertical gas–liquid flow: Bouncing, sliding and bubble deformations. 
Chemical Engineering Science,
 62(6), 1591-1605. 
https://doi.org/10.1016/j.ces.2006.11.044
                                                                                                                 Zenit, R., & Magnaudet, J. (2008). Path instability of rising spheroidal air bubbles: A shape-controlled process. 
Physics of Fluids,
 20(6), 061702. 
https://doi.org/10.1063/1.2940368
                                                                                                                 Zhang, J., & Ni, M. J. (2017). What happens to the vortex structures when the rising bubble transits from zigzag to spiral? 
Journal of Fluid Mechanics,
 828, 353-373. 
https://doi.org/10.1017/jfm.2017.514