Celata, G. P., D’Annibale, F., Di Marco, P., Memoli, G., & Tomiyama, A. (2007). Measurements of rising velocity of a small bubble in a stagnant fluid in one- and two-component systems.
Experimental Thermal and Fluid Science,
31(6), 609-623.
https://doi.org/10.1016/j.expthermflusci.2006.06.006
Chen, Y., Tu, C., Yang, Q., Wang, Y., & Bao, F. (2021). Dynamic behavior of a deformable bubble rising near a vertical wire-mesh in the quiescent water.
Experimental Thermal Fluid Science,
120, 110235.
https://doi.org/10.1016/j.expthermflusci.2020.110235
Choi, H., Lee, J., & Park, H. (2019). Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number.
Physics of Fluids,
31(1), 015102.
https://doi.org/10.1063/1.5054039
Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C., & Wang, D. (2024a). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China.
Journal of Cleaner Production,
434, 140186.
https://doi.org/10.1016/j.jclepro.2023.140186
Dai, B., Wang, Q., Liu, S., Zhang, J., Wang, Y., Kong, Z., Wang, D. (2024b). Multi-objective optimization analysis of combined heating and cooling transcritical CO2 system integrated with mechanical subcooling utilizing hydrocarbon mixture based on machine learning.
Energy Conversion Management,
301, 118057.
https://doi.org/10.1016/j.enconman.2023.118057
Dai, B., Wu, T., Liu, S., Qi, H., Zhang, P., Wang, D., & Wang, X. (2024c). Flow boiling heat transfer characteristics of zeotropic mixture CO2/R152a with large temperature glide in a 2 mm horizontal tube.
International Journal of Heat Mass Transfer,
218, 124779.
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124779
de Vries, A. W. G. (2001). Path and wake of a rising bubble. University of Twente. Enschede, The Netherlands.
de Vries, A. W. G., Biesheuvel, A., & Wijngaarden, L. v. (2002). Notes on the path and wake of a gas bubble rising in pure water.
International Journal of Multiphase Flow,
28(11), 1823-1835.
https://doi.org/10.1016/S0301-9322(02)00036-8
Gong, Z., Cai, J., & Lu, Q. (2020). Experiment characterization of the influence of wall wettability and inclination angle on bubble rising process using PIV.
European Journal of Mechanics / B Fluids,
81, 62-75.
https://doi.org/10.1016/j.euromechflu.2020.01.005
Jeong, H., & Park, H. (2015). Near-wall rising behaviour of a deformable bubble at high Reynolds number.
Journal of Fluid Mechanics,
771, 564-594.
https://doi.org/10.1017/jfm.2015.191
Krishna, R., Urseanu, M. I., Baten, J. M. V., & Ellenberger, J. (1999). Wall effects on the rise of single gas bubbles in liquids.
International Communications in Heat Mass Transfer,
26(6), 781-790.
https://doi.org/10.1016/S0735-1933(99)00066-4
Lee, J. H., Kim, H., Lee, J., & Park, H. (2021). Scale-wise analysis of upward turbulent bubbly flows: An experimental study.
Physics of Fluids,
33, 053316.
https://doi.org/10.1063/5.0048199
Lee, J., & Park, H. (2022). Flow induced by the single-bubble chain depending on the bubble release frequency.
Physics of Fluids,
34, 033312.
https://doi.org/10.1063/5.0083281
Métrailler, D., Reboux, S., & Lakehal, D. (2017). Near-wall turbulence-bubbles interactions in a channel flow at Re τ = 400: A DNS investigation.
Nuclear Engineering and Design,
3213, 180-189.
https://doi.org/10.1016/j.nucengdes.2016.10.055
Sanada, T., Watanabe, M., Fukano, T., & Kariyasaki, A. (2005). Behavior of a single coherent gas bubble chain and surrounding liquid jet flow structure.
Chemical Engineering Science,
60(17), 4886-4900.
https://doi.org/10.1016/j.ces.2005.04.010
Wen, X., Liu, J., Li, Z., Peng, D., Zhou, W., Kim, K. C., & Liu, Y. (2020). Jet impingement using an adjustable spreading-angle sweeping jet.
Aerospace Science Technology,
105, 105956.
https://doi.org/10.1016/j.ast.2020.105956
Yan, H. J., Zhang, H. Y., Zhang, H. M., Liao, Y. X., & Liu, L. (2023). Three-dimensional dynamics of a single bubble rising near a vertical wall:Paths and wakes.
Petroleum Science,
20(3), 1874-1884.
https://doi.org/10.1016/j.petsci.2023.02.014
Yan, H., Zhang, H., Liao, Y., Zhang, H., Zhou, P., & Liu, L. (2022). A single bubble rising in the vicinity of a vertical wall: A numerical study based on volume of fluid method.
Ocean Engineering,
263, 112379.
https://doi.org/10.1016/j.oceaneng.2022.112379
Yin, J., Zhang, Y., Zhu, J., Lv, L., & Tian, L. (2021). An experimental and numerical study on the dynamical behaviors of the rebound cavitation bubble near the solid wall.
International Journal of Heat Mass Transfer,
177(10), 121525.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121525
Yu, Q., Ma, X., Wang, G., Zhao, J., & Wang, D. (2020). Thermodynamic Effect of Single Bubble Near a Rigid Wall.
Ultrasonics Sonochemistry,
105396.
https://doi.org/10.1016/j.ultsonch.2020.105396
Zaruba, A., Lucas, D., Prasser, H.-M., & Höhne, T. (2007). Bubble-wall interactions in a vertical gas–liquid flow: Bouncing, sliding and bubble deformations.
Chemical Engineering Science,
62(6), 1591-1605.
https://doi.org/10.1016/j.ces.2006.11.044
Zenit, R., & Magnaudet, J. (2008). Path instability of rising spheroidal air bubbles: A shape-controlled process.
Physics of Fluids,
20(6), 061702.
https://doi.org/10.1063/1.2940368
Zhang, J., & Ni, M. J. (2017). What happens to the vortex structures when the rising bubble transits from zigzag to spiral?
Journal of Fluid Mechanics,
828, 353-373.
https://doi.org/10.1017/jfm.2017.514