Cardell, G. S. (1993). Flow Past a Circular Cylinder with a Permeable Wake Splitter Plate [Phd Thesis, California Institute of Technology]. Pasadena, California, USA:
Cimbala, J. M., & Chen, K. T. (1994). Supercritical Reynolds number experiments on a freely rotatable cylinder/splitter plate body.
Physics of Fluids (1994-present), (6).
https://doi.org/10.1063/1.868191
Favier, J., Dauptain, A., Basso, D., & Bottaro, A. (2009). Passive separation control using a self-adaptive hairy coating.
Journal of Fluid Mechanics, 627, 451-483.
https://doi.org/10.1017/S0022112009006119
Fujisawa, N., Kawaji, Y., & Ikemoto, K. (2001). Feedback control of vortex shedding from a circular cylinder by rotational oscillations.
Journal of Fluids and Structures, (15), 23-37.
https://doi.org/DOI:10.1006/jfls.2000.0323
Gu, F., J. S. Wangb., X. Q. Qiao., & Z. Huang. (2012). Pressure distribution, fluctuating forces and vortexs hedding behavior of circular cylinder with rotatable splitter plates.
Journal of Fluids and Structures, 263-278.
https://doi.org/doi:10.1016/j.jfluidstructs.2011.11.005
Hwang, J. Y., & Yang, K. S. (2007). Drag reduction on a circular cylinder using dual detached splitter plates.
Journal of Wind Engineering and Industrial Aerodynamics, (95), 551-564.
https://doi.org/10.1016/j.jweia.2006.11.003
Hwang, J. Y., Yang, K. S., & Sun, S. H. (2003, August). Reduction of flow-induced forces on a circular cylinder using a detached splitter plate.
Physics of Fluids, 15(8), 2433-2436.
https://doi.org/10.1063/1.1583733
Kwon, K., & Choi, H. (1996). Control of laminar vortex shedding behind a circular cylinder using splitter plates.
Physics of Fluids-American Institute of Physics, 8(2).
https://doi.org/10.1063/1.868801
Lee, J., & You, D. (2013). Study of vortex-shedding-induced vibration of a flexible splitter plate behind a cylinder.
Physics of Fluids, 25(110811).
https://doi.org/10.1063/1.4819346
Lu, L., Guo, X. L., Tang, G. Q., Liu, M. M., Chen, C. Q., & Xie, Z. H. (2016). Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate.
Physics of Fluids, (28).
https://doi.org/doi: 10.1063/1.4962706
Matsumoto, M., Hashimoto, M., Yagi, T., Nakase, T., & Maeta, K. (2008). Steady galloping/unsteady galloping and vortex-induced vibration of bluff bodies associated with mitigation of karman vortex shedding. BBAA VI International Colloquium on:Bluff Bodies Aerodynamics & Applications. Milano.
Özdil, N. F. (2013). Investigation of flow characteristics around in-line horizontal cylinders in shallow waters [PhD. Thesis, Adana: Cukurova University].
Pinar, E., Ozkan, G. M., Durhasan, T., Aksoy, M. M., & Huseyin Akilli, B. S. (2015). Flow structure around perforated cylinders in shallow water.
Journal of Fluids and Structures, (55), 52-63.
https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2015.01.017.
Raffel, M., Willert, C., Wereley, S., & Kompenhans, J. (2007). Particle Image Velocimetry. Springer.
Roshko, A. (1954). On the drag and shedding frequency of two-dimensional bluff bodies. Nasa.
Sahin, S., Durhasan, T., Pinar, E., & Akilli, H. (2021). Experimental study on passive flow control of circular cylinder via perforated splitter plate.
Wind and Structures, 32(6), 613-621.
https://doi.org/10.12989/WAS.2021.32.6.613
Westerweel, J. (1993). Digital particle image velocimetry: Theory and application [PhD Thessis, Delft University Press].
Zhu, H., Chen, Q., Tang, T., Alam, M. M., & Zhou, T. (2023). Flow structures around a circular cylinder with bilateral splitter plates and their dynamic characteristics.
Ocean Engineering, 269.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2022.113547