Split Control Wind Turbine Airfoil noise with CFD and Acoustic Analogies

Document Type : Regular Article

Authors

1 Research Laboratory LRME, Department of Physics, Faculty of Sciences, M’Hamed Bougara University of Boumerdes, Boumerdes, 35000, Algeria

2 Renewable Energy Development Center, Bouzareah, Algiers, 16340, Algeria

3 Laboratory of Hydrocarbons Physical Engineering, LGPH Faculty of Sciences,M’Hamed Bougara University of Boumerdes, 35000, Boumerdes, Algeria

Abstract

This research aims to investigate the impact of a split airfoil on noise emissions from a horizontal-axis wind turbine. The objective is to comprehensively understand the airflow patterns around the airfoil to reduce noise emissions. The study rigorously examines a range of angles of attack, from 0° to 25°, for both the original airfoil and the airfoil with a split, using advanced computational aerodynamics coupled with analog acoustic analysis. The methodology involves two-dimensional flow simulations with Delayed Detached Eddy Simulation based on the Spalart-Allmaras model, enabling precise near-field flow calculations around the airfoil. Additionally, far-field noise predictions, employing the Ffowcs Williams and Hawkings analogy based on simulated sources, reveal the efficacy of the split airfoil design. Results indicate that the split airfoil design effectively reduces noise emissions across various angles of attack. These reductions translate into a significant decrease in the Overall Sound Pressure Level, ranging from 14% to 19%, and remarkable Sound Pressure Level reductions between 12% and 60% across diverse frequencies, showcasing substantial noise improvements in various frequency ranges.

Keywords

Main Subjects


Acarer, S. (2020). Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines. Energy201, 117659. https://doi.org/10.1016/j.energy.2020.117659
Ackermann, T., & Söder, L. (2000). Wind energy technology and current status: a review. Renewable and sustainable energy reviews4(4), 315-374. https://doi.org/10.1016/S1364-0321(00)00004-6
Anicic, O., Petković, D., & Cvetkovic, S. (2016). Evaluation of wind turbine noise by soft computing methodologies: A comparative study. Renewable and Sustainable Energy Reviews56, 1122-1128. https://doi.org/10.1016/j.rser.2015.12.028
Ansys, A. (2013). Fluent solver theory guide. ANSYS, Inc. Release 15.0, Southpointe. https://www.academia.edu/33546431/ANSYS_Fluent_Theory_Guide
Beyhaghi, S., & Amano, R. S. (2017). Improvement of aerodynamic performance of cambered airfoils using leading-edge slots. Journal of Energy Resources Technology139(5), 051204. https://doi.org/10.1115/1.4036047
Beyhaghi, S., & Amano, R. S. (2018). A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack. Journal of Wind Engineering and Industrial Aerodynamics175, 43-52. https://doi.org/10.1016/j.jweia.2018.01.007
Brentner, K. S., & Farassat, F. (1998). Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA journal36(8), 1379-1386. https://doi.org/10.2514/2.558
Devenport, W., Burdisso, R. A., Camargo, H., Crede, E., Remillieux, M., Rasnick, M., & Van Seeters, P. (2010). Aeroacoustic testing of wind turbine airfoils. National Renewable Energy Laboratory (NREL), Blacksburg, Virginiahttps://www.academia.edu/download/30805444/43471.pdf
Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences211(1107), 564-587. https://doi.org/10.1098/rspa.1952.0060
Liu, Q., Miao, W., Li, C., Hao, W., Zhu, H., & Deng, Y. (2019). Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT. Energy189, 116271. https://doi.org/10.1016/j.energy.2019.116271
Liu, W. Y. (2017). A review on wind turbine noise mechanism and de-noising techniques. Renewable Energy108, 311-320. https://doi.org/10.1016/j.renene.2017.02.034
Luo, K., Zhang, S., Gao, Z., Wang, J., Zhang, L., Yuan, R., Fan, J., & Cen, K. (2015). Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine. Renewable Energy77, 351-362. http://dx.doi.org/10.1016/j.renene.2014.12.024
Maizi, M., Dizene, R., & Mihoubi, M. C. (2017). Reducing noise generated from a wind turbine blade by pitch angle control using CFD and acoustic analogy. Journal of Applied Fluid Mechanics10(4), 1201-1209. https://doi.org/10.18869/acadpub.jafm.73.241.27426
Maizi, M., Mohamed, M. H., Dizene, R., & Mihoubi, M. C. (2018). Noise reduction of a horizontal wind turbine using different blade shapes. Renewable Energy117, 242-256. https://doi.org/10.1016/j.renene.2017.10.058
Mo, J. O., & Lee, Y. H. (2011). Numerical simulation for prediction of aerodynamic noise characteristics on a HAWT of NREL phase VI. Journal of Mechanical Science and Technology25, 1341-1349. https://doi.org/10.1007/s12206-011-0234-1
Mohamed, M. H. (2014). Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines. Energy65, 596-604. https://doi.org/10.1016/j.energy.2013.11.031
Mohamed, M. H. (2019). Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment. Energy, S0360-5442(19)30735-2. https://doi.org/10.1016/j.energy.2019.04.102
Mohamed, M. H. (2021). Synergistic analysis of the aerodynamic impact of a new design of darrieus wind turbine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-20. https://doi.org/10.1080/15567036.2021.1900953
Moshfeghi, M., & Hur, N. (2020). Power generation enhancement in a horizontal axis wind turbine blade using split blades. Journal of Wind Engineering and Industrial Aerodynamics206, 104352. https://doi.org/10.1016/j.jweia.2020.104352
Moshfeghi, M., Ramezani, M., & Hur, N. (2021). Design and aerodynamic performance analysis of a finite span double-split S809 configuration for passive flow control in wind turbines and comparison with single-split geometries. Journal of Wind Engineering and Industrial Aerodynamics214, 104654. https://doi.org/10.1016/j.jweia.2021.104654
Moshfeghi, M., Shams, S., & Hur, N. (2017). Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade. Journal of Wind Engineering and Industrial Aerodynamics167, 148-159.  http://dx.doi.org/10.1016/j.jweia.2017.04.001
Somers, D. M. (1997). Design and experimental results for the S809 airfoil (No. NREL/SR-440-6918). National Renewable Energy Lab.(NREL), Golden, CO (United States). https://www.nrel.gov/docs/legosti/old/6918.pdf
Spalart, P. R. (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. https://doi.org/10.1016/S0142-727X(00)00007-2
Spalart, P. R., & Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. 30th aerospace sciences meeting and exhibit (p. 439). https://doi.org/10.2514/6.1992-439
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics20, 181-195. https://doi.org/10.1007/s00162-006-0015-0
Su, J., Lei, H., Zhou, D., Han, Z., Bao, Y., Zhu, H., & Zhou, L. (2019). Aerodynamic noise assessment for a vertical axis wind turbine using improved delayed detached eddy simulation. Renewable Energy141, 559-569. https://doi.org/10.1016/j.renene.2019.04.038
Wasala, S. H., Storey, R. C., Norris, S. E., & Cater, J. E. (2015). Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation. Journal of Wind Engineering and Industrial Aerodynamics145, 17-29. http://dx.doi.org/10.1016/j.jweia.2015.05.011
Williams, J. F., & Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 321-342. https://doi.org/10.1098/rsta.1969.0031