Acarer, S. (2020). Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines.
Energy,
201, 117659.
https://doi.org/10.1016/j.energy.2020.117659
Anicic, O., Petković, D., & Cvetkovic, S. (2016). Evaluation of wind turbine noise by soft computing methodologies: A comparative study.
Renewable and Sustainable Energy Reviews,
56, 1122-1128.
https://doi.org/10.1016/j.rser.2015.12.028
Beyhaghi, S., & Amano, R. S. (2017). Improvement of aerodynamic performance of cambered airfoils using leading-edge slots.
Journal of Energy Resources Technology,
139(5), 051204.
https://doi.org/10.1115/1.4036047
Beyhaghi, S., & Amano, R. S. (2018). A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack.
Journal of Wind Engineering and Industrial Aerodynamics,
175, 43-52.
https://doi.org/10.1016/j.jweia.2018.01.007
Brentner, K. S., & Farassat, F. (1998). Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces.
AIAA journal,
36(8), 1379-1386.
https://doi.org/10.2514/2.558
Devenport, W., Burdisso, R. A., Camargo, H., Crede, E., Remillieux, M., Rasnick, M., & Van Seeters, P. (2010). Aeroacoustic testing of wind turbine airfoils.
National Renewable Energy Laboratory (NREL), Blacksburg, Virginia.
https://www.academia.edu/download/30805444/43471.pdf
Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
211(1107), 564-587.
https://doi.org/10.1098/rspa.1952.0060
Liu, Q., Miao, W., Li, C., Hao, W., Zhu, H., & Deng, Y. (2019). Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT.
Energy,
189, 116271.
https://doi.org/10.1016/j.energy.2019.116271
Luo, K., Zhang, S., Gao, Z., Wang, J., Zhang, L., Yuan, R., Fan, J., & Cen, K. (2015). Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine.
Renewable Energy,
77, 351-362.
http://dx.doi.org/10.1016/j.renene.2014.12.024
Maizi, M., Dizene, R., & Mihoubi, M. C. (2017). Reducing noise generated from a wind turbine blade by pitch angle control using CFD and acoustic analogy.
Journal of Applied Fluid Mechanics,
10(4), 1201-1209.
https://doi.org/10.18869/acadpub.jafm.73.241.27426
Mo, J. O., & Lee, Y. H. (2011). Numerical simulation for prediction of aerodynamic noise characteristics on a HAWT of NREL phase VI.
Journal of Mechanical Science and Technology,
25, 1341-1349.
https://doi.org/10.1007/s12206-011-0234-1
Mohamed, M. H. (2021). Synergistic analysis of the aerodynamic impact of a new design of darrieus wind turbine.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-20.
https://doi.org/10.1080/15567036.2021.1900953
Moshfeghi, M., & Hur, N. (2020). Power generation enhancement in a horizontal axis wind turbine blade using split blades.
Journal of Wind Engineering and Industrial Aerodynamics,
206, 104352.
https://doi.org/10.1016/j.jweia.2020.104352
Moshfeghi, M., Ramezani, M., & Hur, N. (2021). Design and aerodynamic performance analysis of a finite span double-split S809 configuration for passive flow control in wind turbines and comparison with single-split geometries.
Journal of Wind Engineering and Industrial Aerodynamics,
214, 104654.
https://doi.org/10.1016/j.jweia.2021.104654
Moshfeghi, M., Shams, S., & Hur, N. (2017). Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade.
Journal of Wind Engineering and Industrial Aerodynamics,
167, 148-159.
http://dx.doi.org/10.1016/j.jweia.2017.04.001
Spalart, P. R., & Allmaras, S. (1992).
A one-equation turbulence model for aerodynamic flows. 30th aerospace sciences meeting and exhibit (p. 439).
https://doi.org/10.2514/6.1992-439
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities.
Theoretical and Computational Fluid Dynamics,
20, 181-195.
https://doi.org/10.1007/s00162-006-0015-0
Su, J., Lei, H., Zhou, D., Han, Z., Bao, Y., Zhu, H., & Zhou, L. (2019). Aerodynamic noise assessment for a vertical axis wind turbine using improved delayed detached eddy simulation.
Renewable Energy,
141, 559-569.
https://doi.org/10.1016/j.renene.2019.04.038
Wasala, S. H., Storey, R. C., Norris, S. E., & Cater, J. E. (2015). Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation.
Journal of Wind Engineering and Industrial Aerodynamics,
145, 17-29.
http://dx.doi.org/10.1016/j.jweia.2015.05.011
Williams, J. F., & Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion.
Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 321-342.
https://doi.org/10.1098/rsta.1969.0031