Arabnejad, M. H., Svennberg, U., & Bensow, R. E. (2021). Numerical assessment of cavitation erosion risk using incompressible simulation of cavitating flows.
Wear,
464, 203529.
https://doi.org/10.1016/j.wear.2020.203529
Arabnejad, M. H., Svennberg, U., & Bensow, R. E. (2022). Numerical assessment of cavitation erosion risk in a commercial water-jet pump.
Journal of Fluids Engineering,
144(5), 051201.
https://doi.org/10.1115/1.4052634
Cao, S., Goulas, A., Wu, Y., Tsukamoto, H., Peng, G., Liu, W., Zhao, L., & Cao, B. (1999, July, 18-23). Three-dimensional turbulent flow in a centrifugal pump impeller under design and off-design operating conditions. FEDSM-6872 Proceedings of the ASME Fluids Engineering Division.
Guedes, A., Kueny, J. L., Ciocan, G. D., & Avellan, F. (2002). Unsteady rotor-stator analysis of hydraulic pump-turbine: CFD and experimental approach. 21st IAHR Symposium on hydraulic machinery and systems.
Guleren, K. M., & Pinarbasi, A. (2004). Numerical simulation of the stalled flow within a vaned centrifugal pump.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
218(4), 425-435.
https://doi.org/10.1177/095440620421800407
Huang, R., Wang, Y., Du, T., Luo, X., Zhang, W., & Dai, Y. (2021). Mechanism analyses of the unsteady vortical cavitation behaviors for a waterjet pump in a non-uniform inflow.
Ocean Engineering,
233, 108798.
https://doi.org/10.1016/j.oceaneng.2021.108798
Huang, S., Song, Y., Yin, J., Xu, R., & Wang, D. (2022). Research on pressure pulsation characteristics of a reactor coolant pump in hump region.
Annals of Nuclear Energy,
178, 109325.
https://doi.org/10.1016/j.anucene.2022.109325
Iino, M., & Tanaka, K. (2004). Numerical analysis of unstable phenomena and stabilizing modification of an impeller in a centrifugal pump. Proceedings of 22nd IAHR symposium on hydraulic machinery and systems, Sweden, Stockholm.
Ješe, U., Fortes-Patella, R., & Dular, M. (2015, July). Numerical study of pump-turbine instabilities under pumping mode off-design conditions. In
Fluids Engineering Division Summer Meeting (Vol. 57212, p. V001T33A018). American Society of Mechanical Engineers.
https://doi.org/10.1115/AJKFluids2015-33501
Li, D. Y., Lin, S., Wang, H. J., Fu, W. W., Chen, J. X., Wei, X. Z., & Qin, D. Q. (2019).
Influence of cavitation on hump characteristics in a pump-turbine model. IOP Conference Series: Earth and Environmental Science. IOP Publishing.
https://doi.org/10.1088/1755-1315/240/7/072031
Li, D. Y., Wang, H. J., Xiang, G. M., Gong, R. Z., & Wei, X. Z. (2015, January).
Investigation on cavitation for hump characteristics of a pump turbine in pump mode. IOP Conference Series: Materials Science and Engineering. IOP Publishing.
https://doi.org/10.1088/1757-899X/72/4/042034
Li, D., Song, Y., Lin, S., Wang, H., Qin, Y., & Wei, X. (2021). Effect mechanism of cavitation on the hump characteristic of a pump-turbine.
Renewable Energy,
167, 369-383.
https://doi.org/10.1016/j.renene.2020.11.095
Li, D., Wang, H., Qin, Y., Han, L., Wei, X., & Qin, D. (2017). Entropy production analysis of hysteresis characteristic of a pump-turbine model.
Energy Conversion and Management,
149, 175-191.
https://doi.org/10.1016/j.enconman.2017.07.024
Li, D., Zhu, Y., Lin, S., Gong, R., Wang, H., & Luo, X. (2022). Cavitation effects on pressure fluctuation in pump-turbine hump region.
Journal of Energy Storage,
47, 103936.
https://doi.org/10.1016/j.est.2021.103936
Li, X., Zhu, Z., Li, Y., & Chen, X. (2016). Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
230(7), 633-647.
https://doi.org/10.1177/0957650916663326
Liu, D. M., Zhao, Y. Z., Liu, X. B., Ma, Y., & Wang, W. F. (2015, January).
Pump hump characteristic research based on mass transfer equation. IOP Conference Series: Materials Science and Engineering. IOP Publishing.
https://doi.org/10.1088/1757-899X/72/3/032016
Liu, Y., Wang, D., Ran, H., Xu, R., Song, Y., & Gong, B. (2021). RANS CFD analysis of hump formation mechanism in double-suction centrifugal pump under part load condition.
Energies,
14(20), 6815.
https://doi.org/10.3390/en14206815
Long, Y., An, C., Zhu, R., & Chen, J. (2021a). Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions.
Physics of Fluids,
33(4).
https://doi.org/10.1063/5.0040618
Long, Y., Zhang, M., Zhou, Z., Zhong, J., An, C., Chen, Y., ... & Zhu, R. (2023). Research on cavitation wake vortex structures near the impeller tip of a water-jet pump.
Energies,
16(4), 1576.
https://doi.org/10.3390/en16041576
Long, Y., Zhang, Y., Chen, J., Zhu, R., & Wang, D. (2021b). A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy.
Nuclear Engineering and Technology,
53(11), 3612-3624.
https://doi.org/10.1016/j.net.2021.05.027
Long, Y., Zhu, R., & Wang. D. (2020). A cavitation performance prediction method for pumps PART1-Proposal and feasibility.
Nuclear Engineering and Technology,
52(11), 2471-2478.
https://doi.org/10.1016/j.net.2020.04.007
Ran, H., Liu, Y., Luo, X., Shi, T., Xu, Y., Chen, Y., & Wang, D. (2020). Experimental comparison of two different positive slopes in one single pump turbine.
Renewable Energy,
154, 1218-1228.
https://doi.org/10.1016/j.renene.2020.01.023
Shibata, A., Hiramatsu, H., Komaki, S., Miyagawa, K., Maeda, M., Kamei, S., Hazama, R., Sano, T., & Iino, M. (2016). Study of flow instability in off design operation of a multistage centrifugal pump.
Journal of Mechanical Science and Technology,
30, 493-498.
https://doi.org/doi:10.1007/s12206-016-0101-1
Wang, Y., & Ding, Z. (2022). Optimization design of hump phenomenon of low specific speed centrifugal pump based on CFD and orthogonal test.
Scientific Reports,
12(1), 12121.
https://doi.org/10.1038/s41598-022-16430-w
Xiao, Y., Yao, Y., Wang, Z., Zhang, J., Luo, Y., Zeng, C., & Zhu, W. (2016). Hydrodynamic mechanism analysis of the pump hump district for a pump-turbine.
Engineering Computations,
33(3).
https://doi.org/10.1108/EC-02-2015-0038
Yang, J., Feng, X., Liu, X., Peng, T., Chen, Z., & Wang, Z. (2023). The suppression of hump instability inside a pump turbine in pump mode using water injection control.
Processes,
11(6), 1647.
https://doi.org/10.3390/pr11061647
Ye, W., Ikuta, A., Chen, Y., Miyagawa, K., & Luo, X. (2020). Numerical simulation on role of the rotating stall on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model.
Renewable Energy,
166, 91-107.
https://doi.org/10.1016/j.renene.2020.11.066
Ye, W., Ikuta, A., Chen, Y., Miyagawa, K., & Luo, X. (2021). Investigation on the effect of forward skew angle blade on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model.
Renewable Energy,
170, 118-132.
https://doi.org/10.1016/j.renene.2021.01.122
Zhao, G., Liang, N., Zhang, Y., Cao, L., & Wu, D. (2021). Dynamic behaviors of blade cavitation in a water jet pump with inlet guide vanes: Effects of inflow non-uniformity and unsteadiness.
Applied Ocean Research, 117, 102889.
https://doi.org/10.1016/j.apor.2021.102889
Zhao, H., Wang, F., Wang, C., & Wang, B. (2022). Investigation on the hump region generation mechanism of pump mode in low-head pumped hydro-storage unit.
Physics of Fluids,
34(11).
https://doi.org/10.1063/5.0130836