Abaidi, A., & Madani, B. (2020). Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert.
International Journal of. Hydrogen Energy,
46(75), 37583-37598.
https://doi.org/10.1016/j.ijhydene.2020.12.183
Afgan, I., Kahil, Y., Benhamadouche, S., Ali, M., Alkaabi, A., Berrouk, S. A., & Sagaut, P. (2023). Cross flow over two heated cylinders in tandem arrangements at subcritical Reynolds number using large eddy simulations.
International Journal of. Heat and Fluid Flow, 100(10), 109115.
https://doi.org/10.1016/j.ijheatfluidflow.2023.109115
Behera, S., & Saha, K. A. (2019). Characteristics of the flow past a wall-mounted finite-length square cylinder at low Reynolds number with varying boundary layer thickness.
Journal of Fluids Engineering,
141(6), 061204.
https://doi.org/10.1115/1.4042751
Bhattacharya, A., Calmidi, V. V., & Mahajan, L. R. (2002) Thermophysical properties of high porosity metal foams.
International Journal of Heat and Mass Transfer,
45(5), 1017-1031.
https://doi.org/10.1016/S0017-9310(01)00220-4
Clift, R., Grace, J. R., & Weber, M. E. (2013). Bubbles, drops and particles. Dover Publications, Incorporated. ISBN 9780486788920, 048678892X
Ferfera, S. R., & Madani, B. (2020). Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams.
International Journal of. Heat and Mass Transfer,
148 (11), 119162.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119162
Haupt, E. S., Zajaczkowski, J. F., & Peltier. J. L. (2011). Detached eddy simulation of atmospheric flow about a surface mounted cube at high reynolds number.
Journal of Fluids Engineering,
133(3), 031002.
https://doi.org/10.1115/1.4003649
Hu, J., Xuan, B. H., Kwok, S. C. K., Zhang, Y., & Yu, Y. (2018). Study of wind flow over a 6m cube using improved delayed detached Eddy simulation.
Journal of Wind Engineering and Industrial Aerodynamics, 179, 463-474.
https://doi.org/10.1016/j.jweia.2018.07.003
Hwang, Y. J., & Yang, S. K. (2004). Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow.
Physics of Fluid, 16(7), 2382-2394.
https://doi.org/10.1063/1.1736675
Islam, U. S., Rahman, H., Abbasi, S. W., Noreen, U., & Khan., A. (2014). Suppression of fluid force on flow past a square cylinder with a detached flat plate at low Reynolds number for various spacing ratio.
Journal of Mechanical Science and Technology,
28 (12), 4969-4978.
https://doi.org/10.1007/s12206-014-1118-y
Jiang, H., & Cheng, L. (2020). Flow separation around a square cylinder at low to moderate Reynolds numbers.
Physics of Fluids,
32(4), 044103.
https://doi.org/10.1063/5.0005757
Klotz, L., Durand, G. S., Rokicki, J., & Wesfreid, E. J. (2014). Experimental investigation of flow behind a cube for moderate Reynolds numbers.
Journal of Fluid Mechanics,
750, 73-98.
https://doi.org/10.1017/jfm.2014.236
Kravchenko, G. A., & Moin, P. (2000). Numerical studies of flow over a circular cylinder at Re
D = 3900.
Physics of Fluids,
12(2), 403-417.
https://doi.org/10.1063/1.870318
Launay, G., Mignot, E., & Rivière, N. (2019). Laminar free-surface flow around emerging obstacles: Role of the obstacle elongation on the horseshoe vortex.
European Journal of Mechanics - B/Fluids,
77, 71–78.
https://doi.org/10.1016/j.euromechflu.2019.04.006
Li, J., Chambarel, A., Donneaud, M., & Martin, R. (1991).
Numerical study of laminar flow past one and two circular cylinders,
Computers & Fluids,
19(02), 155–170.
https://doi.org/10.1016/0045-7930(91)90031-C
Liakos, A., & Malamataris, A. N. (2014). Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube.
Physics of Fluids,
26(5), 053603.
https://doi.org/10.1063/1.4876176
Ma, Y., Rashidi, M. M., & Yang, Z. (2019). Numerical simulation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream.
Journal of Hydrodynamics,
31(5), 949-964.
https://doi.org/10.1007/s42241-018-0087-5
Madani, B., Topin, F., Tadrist, T., & Rigollet, F. (2007). Flow laws in metallic foams: Experimental determination of inertial and viscous contributions.
Journal of Porous Media, 10(1), 51-70.
https://doi.org/ 10.1615/JPorMedia.v10.i1.40
Saha, K. A. (2004). Three-dimensional numerical simulations of the transition of flow past a cube.
Physics of Fluids,
16(5), 1630–1646.
https://doi.org/10.1063/1.1688324
Shang, J., Zhou, Q., Alam, M. Md., Liao, H., & Cao, S. (2019). Numerical studies of the flow structure and aerodynamic forces on two tandem square cylinders with different chamfered-corner ratios.
Physics of Fluids, 31(7), 075102.
https://doi.org/10.1063/1.5100266
Sumner, D., Rostamy, N., Bergstrom, D. J., & Bugg, J. D. (2017). Influence of aspect ratio onthe mean flow field of a surface-mounted finite-height square prism.
International Journal of Heat and Fluid Flow,
65, 1–20.
https://doi.org/10.1016/j.ijheatfluidflow.2017.02.004
Zhang, D., Cheng, L., An, H., & Zhao, M. (2017). Direct numerical simulation of flow around a surface mounted finite square cylinder at low Reynolds numbers.
Physics of Fluids,
29(4), 045101.
https://doi.org/10.1063/1.4979479
Zhang, X. F., Yang, J. C., Ni, M. J., Zhang, N. M., & Yu, X. G. (2022). Experimental and numerical studies on the three-dimensional flow around single and two tandem circular cylinders in a duct.
Physics of Fluids, 34 (03), 033610.
https://doi.org/10.1063/5.0084764.
Zhao, M., Al Mamoon, A., & Wu, H. (2021). Numerical study of the flow past two wall-mounted finite-length square cylinders in tandem arrangement.
Physics of Fluids, 33(9), 093603.
https://doi.org/10.1063/5.0058394
Zhou, Q., Alam, M. Md., Cao, S., Liao, H., & Li, M. (2019). Numerical study of wake and aerodynamic forces on two tandem circular cylinders at Re = 10
3.
Physics of Fluids, 31(4), 045103.
https://doi.org/10.1063/1.5087221