Adeodu, A., Daniyan, I., Omitola, O., Ejimuda, C., Agbor, E., & Akinola, O. (2020). An adaptive Industrial Internet of things (IIOts) based technology for prediction and control of cavitation in axialpumps.
Procedia CIRP, 91, 927-934.
http://creativecommons.org/licenses/by-nc-nd/4.0/
Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L., Hakimi, N., & Hirsch, C. (2005). Stability of preconditioned Navier–Stokes equations associated with a cavitation model.
Computers & Fluids, 34(3), 319-349.
https://doi.org/10.1016/j.compfluid.2004.05.007
Hallaji, S. M., Fang, Y., & Winfrey, B. K. (2022). Predictive maintenance of pumps in civil infrastructure: State-of-the-art, challenges and future directions.
Automation in Construction, 134, 104049.
https://doi.org/10.1016/j.autcon.2021.104049
Harihara, P. P., & Parlos, A. G. (2008, January).
Sensorless detection of impeller cracks in motor driven axialpumps. ASME International Mechanical Engineering Congress and Exposition (Vol. 48661, pp. 17-23).
https://doi.org/10.1115/IMECE2008-66273
Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., ... & Govindan, T. (2000). A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction.
Computers & Fluids, 29(8), 849-875.
https://doi.org/10.1016/S0045-7930(99)00039-0
Laberteaux, K. R., Ceccio, S. L., Mastrocola, V. J., & Lowrance, J. L. (1998). High speed digital imaging of cavitating vortices.
Experiments in Fluids, 24(5-6), 489-498.
https://doi.org/10.1007/s003480050198
Mousmoulis, G., Karlsen-Davies, N., Aggidis, G., Anagnostopoulos, I., & Papantonis, D. (2019). Experimental analysis of cavitation in a axialpump using acoustic emission, vibration measurements and flow visualization.
European Journal of Mechanics-B/Fluids, 75, 300-311.
https://doi.org/10.1016/j.euromechflu.2018.10.015
Oza, M. N., & Shah, D. S. (2020, November).
Theoretical and experimental modal analysis of axialpump radial flow impeller. IOP Conference Series: Materials Science and Engineering (Vol. 992, No. 1, p. 012003). IOP Publishing.
https://doi.org/10.1088/1757-899X/992/1/012003
Pouffary, B., Patella, R. F., Reboud, J. L., & Lambert, P. A. (2008). Numerical simulation of 3D cavitating flows: analysis of cavitation head drops in turbomachinery.
Schnerr, G. H., & Sauer, J. (2001, May). Physical and numerical modeling of unsteady cavitation dynamics. Fourth international conference on multiphase flow (Vol. 1). New Orleans, LO, USA: ICMF New Orleans.
Sendilvelan, S., & Prabhahar, M. (2017). Pre-stress modal analysis of a axialpump impeller for different blade thicknesses.
International Journal of Mechanical and Production Engineering Research and Development, 7, 507-516.
https://doi.org/10.24247/ijmperddec201758
Shagluf, A., Parkinson, S., Longstaff, A. P., & Fletcher, S. (2018). Adaptive decision support for suggesting a machine tool maintenance strategy: from reactive to preventative.
Journal of Quality in Maintenance Engineering, 24(3), 376-399.
https://doi.org/10.1108/JQME-02-2017-0008
Tian, Y., & Hu, A. (2018). Study on critical speed of rotation in the multistage high speed axialpumps rotors.
International Journal of Heat & Technology, 36(1), 31-39.
https://doi.org/10.18280/ijht.360105
Xu, C., Zhou, H., & Mao, Y. (2020). Analysis of vibration and noise induced by unsteady flow inside a axialcompressor.
Aerospace Science and Technology, 107, 106286.
https://doi.org/10.1016/j.ast.2020.106286
Zhang, Y., Liu, J., Yang, X., Li, H., Chen, S., Lv, W., ... & Wang, D. (2022). Vibration analysis of a high-pressure multistage axialpump.
Scientific Reports, 12(1), 20293.
http://creativecommons.org/licenses/by/4.0/