Abdolahipour, S., Mani, M., & Shams Taleghani, A. (2022). Pressure improvement on a supercritical high-lift wing using simple and modulated pulse jet vortex generator
. Flow, Turbulence and Combustion, 109(1), 65-100.
https://doi.org/10.1007/s10494-022-00327-9
Abdolahipour, S., Mani, M., & Taleghani, A. S. (2021). Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics.
Physica Scripta, 96(12), 125012.
https://doi.org/10.1088/1402-4896/ac2bdf
Abdollahzadeh, M., Pascoa, J. C., & Oliveira, P. J. (2014a). Modified split-potential model for modeling the effect of DBD plasma actuators in high altitude flow control.
Current Applied Physics, 8(14), 1160-1170.
https://doi.org/10.1016/j.cap.2014.05.016
Abdollahzadeh, M., Páscoa, J. C., & Oliveira, P. J. (2014b). Two-dimensional numerical modeling of interaction of micro-shock wave generated by nanosecond plasma actuators and transonic flow.
Journal of Computational and Applied Mathematics, 270, 401-416.
https://doi.org/10.1016/j.cam.2013.12.030
Abdollahzadeh, M., Pascoa, J. C., & Oliveira, P. J. (2018). Comparison of DBD plasma actuators flow control authority in different modes of actuation.
Aerospace Science and Technology, 78, 183-196.
https://doi.org/10.1016/j.ast.2018.04.013
Abed ZahmatkeshPasand, S., Ghaemi Osgouie, S. K., Karimian Aliabadi, S., & Moshfeghi, M. (2023). Numerical study of the effect of weather parameters on corona discharge performance in a horizontal axis wind turbine. International
Journal of Nonlinear Analysis and Applications,
14(12), 187-196
https://doi.org/10.22075/ijnaa.2022.29450.4170
Belabes, B., & Paraschivoiu, M. (2023). CFD modeling of vertical-axis wind turbine wake interaction.
Transactions of the Canadian Society for Mechanical Engineering, 47, 449-458
https://doi.org/10.1139/tcsme-2022-0149
Benard, N., & Moreau, E. (2014). Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control.
Experiments in Fluids, 11(55), 1-43.
https://doi.org/10.1007/s00348-014-1846-x
Benmoussa, A., & Páscoa, J. C. (2023). Enhancement of a cycloidal self-pitch vertical axis wind turbine performance through DBD plasma actuators at low tip speed ratio.
International Journal of Thermo- fluids, 17, 100258.
https://doi.org/10.1016/j.ijft.2022.100258
Blaabjerg, F., Chen, Z., Teodorescu, R., & Iov, F. (2006).
Power electronics in wind turbine systems. 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference (Vol. 1, pp. 1-11). IEEE.
https://doi.org/10.1109/IPEMC.2006.4777946
Chen, C., Wang, L., & Niu, M. (2023). Research on the application of improved NSGA-II in the structure design of wind turbine blade spar cap.
Frontiers in Energy Research, 11, 1160423.
https://doi.org/10.3389/fenrg.2023.1160423
De Giorgi, M. G., Motta, V., Suma, A., & Lafori, A. (2021). Comparison of different plasma actuation strategies for aeroelastic control on a linear compressor cascade.
Aerospace Science and Technology, 117, 106902.
https://doi.org/10.1016/j.dib.2021.107584
Ebrahimi, A., & Hajipour, M. (2018). Flow separation control over an airfoil using dual excitation of DBD plasma actuators.
Aerospace Science and Technology, 79, 658-668.
https://doi.org/10.1016/j.ast.2018.06.019
Ebrahimi, A., Hajipour, M., & Ghamkhar, K. (2018). Experimental study of stall control over an airfoil with dual excitation of separated shear layers.
Aerospace Science and Technology, 82, 402-411.
https://doi.org/10.1016/j.ast.2018.09.027
Ekonomou, L., Lazarou, S., Chatzarakis, G. E., & Vita, V. (2012). Estimation of wind turbines optimal number and produced power in a wind farm using an artificial neural network model.
Simulation Modelling Practice and Theory, 21(1), 21-25.
https://doi.org/10.1016/j.simpat.2011.09.009
El Kasmi, A., & Masson, C. (2008). An extended k–ε model for turbulent flow through horizontal-axis wind turbines.
Journal of Wind Engineering and Industrial Aerodynamics, 96(1), 103-122.
https://doi.org/10.1016/j.jweia.2007.03.007
Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., & Corke, T. C. (2004). Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology.
AIAA Journal, 3(42), 589-594.
https://doi.org/10.2514/1.3884
Fadaei, M., Davari, A., Sabetghadam, F., & Soltani, M. R. (2020). Investigation of single dielectric barrier discharge plasma actuator effect on separation control of a critical section of wind turbine blade.
Modares Mechanical Engineering, 9(20), 2289-2302.
http://dorl.net/dor/20.1001.1.10275940.1399.20.9.4.1
Guerra‐Garcia, C., Nguyen, N. C., Mouratidis, T., & Martinez‐Sanchez, M. (2020). Corona discharge in wind for electrically isolated electrodes.
Journal of Geophysical Research: Atmospheres, 125(16), e2020JD032908.
https://doi.org/10.1029/2020JD032908
Gulski, E., Anders, G. J., Jongen, R. A., Parciak, J., Siemiński, J., Piesowicz, E., & Irska, I. (2021). Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability.
Renewable and Sustainable Energy Reviews, 151, 111580.
https://doi.org/10.1016/j.rser.2021.111580
Hodgson, E. L., Grinderslev, C., Meyer Forsting, A. R., Troldborg, N., Sørensen, N. N., Sørensen, J. N., & Andersen, S. J. (2022). Validation of aeroelastic actuator line for wind turbine modelling in complex flows.
Frontiers in Energy Research, 10, 864645.
https://doi.org/10.3389/fenrg.2022.864645
Liu, Y., Liu, S., Zhang, L., Cao, F., & Wang, L. (2021). Optimization of the yaw control error of wind turbine.
Frontiers in Energy Research, 9, 626681.
https://doi.org/10.3389/fenrg.2021.626681
Maas, O. (2023). Large-eddy simulation of a 15 GW wind farm: Flow effects, energy budgets and comparison with wake models.
Frontiers in Mechanical Engineering, 9, 1108180.
https://doi.org/10.3389/fmech.2023.1108180
Mohammadi, M., & Taleghani, A. S. (2014). Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil.
Arabian Journal for Science and Engineering, 39, 2363-2370.
https://doi.org/10.1007/s13369-013-0772-1
Nazari, A., Jafari, M., Rezaei, N., Taghizadeh-Hesary, F., & Taghizadeh-Hesary, F. (2021). Jet fans in the underground car parking areas and virus transmission.
Physics of fluids, 33(1), 013603.
https://doi.org/10.1063/5.0033557
Nazari, A., Wang, C., He, R., Taghizadeh-Hesary, F., & Hong, J. (2023). Numerical investigation of airborne infection risk in an elevator cabin under different ventilation designs.
Physics of Fluids, 35(6).
https://doi.org/10.1063/5.0152878
Oehme, F., Gleichauf, D., Balaresque, N., Sorg, M., & Fischer, A. (2022). Thermographic detection and localization of unsteady flow separation on rotor blades of wind turbines.
Frontiers in Energy Research, 10, 1043065.
https://doi.org/10.3389/fenrg.2022.1043065
Omidi, J., & Mazaheri, K. (2017). Improving the performance of a numerical model to simulate the EHD interaction effect induced by dielectric barrier discharge.
International Journal of Heat and Fluid Flow, 67(5), 79-94.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2017.07.008
Qu, J., Zeng, M., Zhang, D., Yang, D., Wu, X., Ren, Q., & Zhang, J. (2021). A review on recent advances and challenges of ionic wind produced by corona discharges with practical applications.
Journal of Physics D: Applied Physics, 55(15), 153002.
https://doi.org/10.1088/1361-6463/ac3e2c
Qu, L., Wang, Y., Liu, G., Liao, M., Cai, H., Zhang, T., Deng, Y. & Wen, X. (2019). Simulation study on positive corona discharge of receptors on rotating wind turbine blade tips under thundercloud electric fields.
Energies, 12(24), 4696.
https://doi.org/10.3390/en12244696
Ramesh Kumar, K., & Selvaraj, M. (2023a). Investigations on integrated funnel, fan and diffuser augmented unique wind turbine to enhance the wind speed.
Journal of Applied Fluid Mechanics, 16(3), 575-589.
https://www.jafmonline.net/article_2166.html
Ramesh Kumar, K., & Selvaraj, M. (2023b). Novel deep learning model for predicting wind velocity and power estimation in advanced INVELOX wind turbines
. Journal of Applied Fluid Mechanics, 16(6), 1256-1268.
https://www.jafmonline.net/article_2221.html
Roth, J. R. (2003). Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma.
Physics of Plasmas, 5(10), 2117-2126.
https://doi.org/10.1063/1.1564823
Salmasi, A., Shadaram, A., & Taleghani, A. S. (2013). Effect of plasma actuator placement on the airfoil efficiency at post stall angles of attack
. IEEE Transactions on Plasma Science, 41(10), 3079-3085.
https://doi.org/10.1109/TPS.2013.2280612
Sanderse, B., Van der Pijl, S. P., & Koren, B. (2011). Review of computational fluid dynamics for wind turbine wake aerodynamics.
Wind energy, 14(7), 799-819.
https://doi.org/10.1002/we.458
Shams Taleghani, A., Shadaram, A., Mirzaei, M., & Abdolahipour, S. (2018). Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1-13.
https://doi.org/10.1007/s40430-018-1120-x
Shams Taleghani. A., Shadaram, A., & Mirzaei, M. (2012). Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil.
IEEE Transactions on Plasma Science, 40(5), 1434-1440.
https://doi.org/10.1109/TPS.2012.2187683
Sheikholeslam Noori, S. M., Shams Taleghani, S. A., & Taeibi, M. (2020a). Phenomenological investigation of drop manipulation using surface acoustic waves.
Microgravity Science and Technology, 32, 1147-1158.
https://doi.org/10.1007/s12217-020-09839-3
Sheikholeslam Noori, S. M., Shams Taleghani, S. A., & Taeibi, M. (2021). Surface acoustic waves as control actuator for drop removal from solid surface.
Fluid Dynamics Research, 53(4), 045503.
https://doi.org/10.1088/1873-7005/ac12af
Sheikholeslam Noori, S. M., Taeibi, M., & Shams Taleghani, S. A. (2020b). Effects of contact angle hysteresis on drop manipulation using surface acoustic waves.
Theoretical and Computational Fluid Dynamics, 34, 145-162.
https://doi.org/10.1007/s00162-020-00516-0
Sheikholeslam Noori, S. M., Taeibi, M., & Shams Taleghani, S. A. (2020c). Numerical analyses of droplet motion over a flat plate due to surface acoustic waves.
Microgravity Science and Technology, 32, 647-660.
https://doi.org/10.1007/s12217-020-09784-1
Sinner, M., Petrović, V., Stockhouse, D., Langidis, A., Pusch, M., Kühn, M., & Pao, L. Y. (2023). Insensitivity to propagation timing in a preview-enabled wind turbine control experiment.
Frontiers in Mechanical Engineering, 9, 1145305.
https://doi.org/10.3389/fmech.2023.1145305
Suzen, Y. B., & Huang, P. G. (2005). Numerical simulation of unsteady wake/blade interactions in low-pressure turbine flows using an intermittency transport equation,
Journal of Turbomachinery, 127(3), 431-444. 431-444.
https://doi.org/10.1115/1.1860375
Taeibi, M., Shams Taleghani, S. A., Sheikholeslam Noori, S. M., & Ahmadi, G. (2022). Computational simulation of water removal from a flat plate, using surface acoustic waves.
Wave Motion, 111, 102867.
https://doi.org/10.1016/j.wavemoti.2021.102867
Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A., & Schatzman, D. (2009). Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control.
AIAA Journal, 9(47), 2169-2178.
https://doi.org/10.2514/1.41588
Wang, J., Cai, Y. X., Li, X. H., Shi, Y. F., Bao, Y. C., Wang, J., & Shi, Y. X. (2018). Ionic wind development in corona discharge for LED cooling.
IEEE Transactions on Plasma Science, 46(5), 1821-1830.
https://doi.org/10.1109/TPS.2018.2816820
Yang, J., & Zhang, W. (2023). Forced response analysis of the rotor blade rows with the ROM-based aeroelastic model.
Aerospace Science and Technology, 139, 108366.
https://doi.org/10.1016/j.ast.2023.108366
Yu, W., Li, Q., Zhao, J., & Siew, W. H. (2022). Numerical simulation of the lightning leader development and upward leader initiation for rotating wind turbine.
Machines, 10(2), 115.
https://doi.org/10.3390/machines10020115
Zhang, Y. N., Wang, X. Y., Zhang, Y. N., & Liu, C. (2019). Comparisons and analyses of vortex identification between Omega method and Q criterion.
Journal of Hydrodynamics, 31, 224-230.
https://doi.org/10.1007/s42241-019-0025-1