Anderson, B. H., & Benson, T. J. (1983).
Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension. NASA Technical Memorandum,
https://doi.org/10.2514/6.1983-136
Arndt, R. E., Song, C., Kjeldsen, M., He, J., & Keller, A. (2000, September 17-22). Instability of partial cavitation: a numerical/experimental approach. [Twenty-Third Symposium on Naval Hydrodynamics]. 2000 Val de Reuil, France. National Academies Press.
Brennen, C. E. (2011). Hydrodynamics of pumps. London, England: Cambridge University Press.
Brennen, C. E. (2013). Cavitation and bubble dynamics. Cambridge, UK: Cambridge University Press.
Budich, B., Schmidt, S. J., & Adams, N. A. (2018). Numerical simulation and analysis of condensation shocks in cavitating flow.
Journal of Fluid Mechanics, 838, 759-813.
https://doi.org/10.1017/jfm.2017.882
Cervone, A., Bramanti, C., Rapposelli, E., & Agostino, L. D. (2006). Thermal cavitation experiments on a NACA 0015 hydrofoil.
Journal of Fluids Engineering, 128(2), 953-956.
https://doi.org/10.1115/1.2169808
Dang, J., & Kuiper, G. (1999). Re-entrant jet modeling of partial cavity flow on three-dimensional hydrofoils.
Journal of Fluids Engineering, 121(4), 781-787.
https://doi.org/10.1115/1.2823537
Foeth, E. J., Van Terwisga, T., & Van Doorne, C. (2008). On the collapse structure of an attached cavity on a three-dimensional hydrofoil.
Journal of Fluids Engineering, 130(7), 071303.
https://doi.org/10.1115/1.2928345
Ganesh, H. (2015). Bubbly shock propagation as a cause of sheet to cloud transition of partial cavitation and stationary cavitation bubbles forming on a delta wing vortex. (Doctoral dissertation).
Ganesh, H., Makiharju, S. A., & Ceccio, S. L. (2016). Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities.
Journal of Fluid Mechanics, 802, 37-78.
https://doi.org/10.1017/jfm.2016.425
Gu, F. D., Huang, Y. D., & Zhang, D. S. (2021). Cavitation of multiscale vortices in circular cylinder wake at Re = 9500.
Journal of Marine Science and Engineering, 9(12), 1366.
https://doi.org/10.3390/jmse9121366
Gu, F. D., Shi, L., Shen, X., Zhang, D. S., & van Esch B. P. M. (2024). Research on the suppression mechanism of a tip leakage vortex over a hydrofoil with double-control-hole structure.
Ocean Engineering, 293, 116610.
https://doi.org/10.1016/j.oceaneng.2023.116610
Iga, Y., Hashizume, K., & Yoshida, Y. (2011). Numerical analysis of three types of cavitation surge in cascade.
Journal of Fluids Engineering, 133(7), 071102.
https://doi.org/10.1115/1.4003663
Ji, B., Cheng, H. Y., Huang, B., Luo, X. W., Peng, X. X., & Long, X. P. (2019). Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation.
Advances in Mechanics, 49(00), 428-479.
https://doi.org/10.6052/1000-0992-17-012
Kawakami, D. T., Fuji, A., Tsujimoto, Y., & Arndt, R. E. A. (2008). An assessment of the influence of environmental factors on cavitation instabilities.
Journal of Fluids Engineering, 130(3), 031303.
https://doi.org/10.1115/1.2842146
Kawanami, Y., Kato, H., & Yamaguchi, H. (1998). Three-dimensional characteristics of the cavities formed on a two-dimensional hydrofoil. Proceedings of the Third International Symposium on Cavitation, Grenoble, France, Laboratoire des Ecoulements Géophysiques et Industriels.
Kawanami, Y., Kato, H., Yamaguchi, H., Maeda, M., & Nakasumi, S. (2002). Inner structure of cloud cavity on a foil section.
JSME International Journal Series B Fluids and Thermal Engineering, 5(3), 655-661.
https://doi.org/10.1299/jsmeb.45.655
Kjeldsen, M., Arndt, R. E., & Effertz, M. (2000). Spectral characteristics of sheet/cloud cavitation.
Journal of Fluids Engineering, 122(3), 481-487.
https://doi.org/10.1115/1.1287854
Kubota, A., Kato, H., & Yamaguchi, H. (2006). A new modelling of cavitating flows a numerical study of unsteady cavitation on a hydrofoil section.
Journal of Fluid Mechanics, 240(240), 59--96.
https://doi.org/10.1017/S002211209200003X
Leger, A. T., & Ceccio, S. L. (1998). Examination of the flow near the leading edge of attached cavitation. Part 1. Detachment of two-dimensional and axisymmetric cavities.
Journal of Fluid Mechanics, 376, 690.
https://doi.org/10.1017/S0022112098002766
Long, X. P., Cheng, H. Y., Ji, B., Arndt, R. E. A., & Peng, X. X. (2018). Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil.
International Journal of Multiphase Flow, 100, 41-56.
https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.002
Matthew, S. C., David, F. F., Hak-Kim C., & Raper, J. A. (2004). Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length.
Journal of Pharmaceutical Sciences, 93(11), 2863-2876.
https://doi.org/10.1002/jps.20201
Schlichting, H., & Gersten, K. (2016). Boundary-layer theory. springer.
Sun, L. Y., Pan, Q., Zhang, D. S., Zhao, R. J., & van Esch, B. P. M. (2022). Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods.
Energy, 258(0), 124794.
https://doi.org/10.1016/j.energy.2022.124794
Tsujimoto. Y., Watanabe, S., & Horiguchi, H. (2009). Cavitation instabilities of hydrofoils and cascades. International
Journal of Fluid Machinery and Systems, 1(1), 38-46.
https://doi.org/10.5293/IJFMS.2008.1.1.038
Wan, F. L. (2019). Optimization of cryogenic submerged pump with an inducer and experiment research of cavitation performance. (Master's thesis) Jiangsu University.
Yi, Q. (2017). Microstructure design of hydrofoil surface and its influence on cavitation flow field. (Master's thesis) Dalian University of Technology.
Zhang, D. S., Shi, L., Shi, W. D., Zhao, R. J., Wang, H. Y., & van Esch, B. P. M. (2015). Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump.
International Journal of Multiphase Flow, 77, 244-259.
https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.006