Abugattas, C., Aguirre, A., Castillo, E., & Cruchaga, M. (2020). Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models.
Applied Mathematical Modelling,
88, 529–549.
https://doi.org/10.1016/j.apm.2020.06.066
Akhlaghi, M., Mohammadi, V., Nouri, N. M., Taherkhani, M., & Karimi, M. (2019). Multi-Fluid VoF model assessment to simulate the horizontal air–water intermittent flow.
Chemical Engineering Research and Design,
152, 48–59.
https://doi.org/10.1016/j.cherd.2019.09.031
Chen, G., Wang, Q., & He, S. (2019). Assessment of an eulerian multi-fluid VOF model for simulation of multiphase flow in an industrial Ruhrstahl–Heraeus degasser.
Metallurgical Research & Technology,
116(6), 617.
https://doi.org/10.1051/metal/2019049
Dai, W. F., Wu, P., & Liu, G. M. (2021). A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device.
The International Journal of Artificial Organs,
44(7), 471–480.
https://doi.org/10.1177/0391398820975405
Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration.
Journal of Applied Physiology,
37(2), 247–248.
https://doi.org/10.1152/jappl.1974.37.2.247
Ebrahimi, S., & Bagchi, P. (2022). A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks.
Scientific Reports,
12(1), 4304.
https://doi.org/10.1038/s41598-022-08357-z
Gijsen, F. J. H. Vosse, F. N. V. D., & Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model.
Journal of Biomechanics, 32(7), 705-713.
https://doi.org/10.1016/s0021-9290(99)00014-7
Haghighi, A. R., & Aliashrafi, N. (2018). A mathematical modeling of pulsatile blood flow through a stenosed artery under effect of a magnetic field.
Journal of Mathematical Modeling,
Online First.
https://doi.org/10.22124/jmm.2018.9259.1137
Haghighi, A. R., & Asadi Chalak, S. (2017). Mathematical modeling of blood flow through a stenosed artery under body acceleration.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
39(7), 2487–2494.
https://doi.org/10.1007/s40430-017-0716-x
Haghighi, A. R., Aliashrafi, N., & Asl, M. S. (2020). An implicit approach to the micropolar fluid model of blood flow under the effect of body acceleration.
Mathematical Sciences,
14(3), 269–277.
https://doi.org/10.1007/s40096-020-00340-x
Haghighi, A., & Pirhadi, N. (2019). A Numerical study of heat transfer and flow characteristics of pulsatile blood flow in a tapered artery with a combination of stenosis and aneurysm.
International Journal of Heat and Technology,
37(1), 11–21.
https://doi.org/10.18280/ijht.370102
Han, D., Leibowitz, J. L., Han, L., Wang, S., He, G., Griffith, B. P., & Wu, Z. J. (2022). Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag.
Medicine in Novel Technology and Devices,
15, 100153.
https://doi.org/10.1016/j.medntd.2022.100153
Jung, J., Lyczkowski, R. W., Panchal, C. B., & Hassanein, A. (2006). Multiphase hemodynamic simulation of pulsatile flow in a coronary artery.
Journal of Biomechanics,
39(11), 2064–2073.
https://doi.org/10.1016/j.jbiomech.2005.06.023
Kannojiya, V., Das, A. K., & Das, P. K. (2021). Simulation of blood as fluid: A review from rheological aspects.
IEEE Reviews in Biomedical Engineering,
14, 327–341.
https://doi.org/10.1109/RBME.2020.3011182
Li, Y., Wang, H., Xi, Y., Sun, A., Deng, X., Chen, Z., & Fan, Y. (2023). Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO.
Artificial Organs,
47(1), 88–104.
https://doi.org/10.1111/aor.14384
Ling, Y., Tang, J., & Liu, H. (2021). Numerical investigation of two-phase non-Newtonian blood flow in bifurcate pulmonary arteries with a flow resistant using Eulerian multiphase model.
Chemical Engineering Science,
233, 116426.
https://doi.org/10.1016/j.ces.2020.116426
Meng, L., Gao, S., Wei, D., Zhao, Q., Cui, B., Shen, Y., & Song, Z. (2023). Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach.
International Journal of Mining Science and Technology, 33(2), 251-263.
https://doi.org/10.1016/j.ijmst.2022.09.016
Parsi, M., Agrawal, M., Srinivasan, V., Vieira, R. E., Torres, C. F., McLaury, B. S., Shirazi, S. A., Schleicher, E., & Hampel, U. (2016). Assessment of a hybrid CFD model for simulation of complex vertical upward gas–liquid churn flow.
Chemical Engineering Research and Design,
105, 71–84.
https://doi.org/10.1016/j.cherd.2015.10.044
Qiao, Y., Zeng, Y., Ding, Y., Fan, J., Luo, K., & Zhu, T. (2019). Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.
Computer Methods in Biomechanics and Biomedical Engineering,
22(6), 620–630.
https://doi.org/10.1080/10255842.2019.1577398
Schenkel, A., Deville, M. O., Sawley, M. L., Hagmann, P., & Rochat, J. D. (2013). Flow simulation and hemolysis modeling for a blood centrifuge device.
Computers & Fluids,
86, 185–198.
https://doi.org/10.1016/j.compfluid.2013.06.019
Shonibare, O. Y., & Wardle, K. E. (2015). Numerical investigation of vertical plunging jet using a Hybrid Multifluid–VOF multiphase CFD solver.
International Journal of Chemical Engineering,
2015, 1–14.
https://doi.org/10.1155/2015/925639
Wu, T., & Feng, J. J. (2013). Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage.
Biomicrofluidics,
7(4), 044115.
https://doi.org/10.1063/1.4817959
Xiao, L., Liu, Y., Chen, S., & Fu, B. (2016). Simulation of deformation and aggregation of two red blood cells in a stenosed microvessel by dissipative particle dynamics.
Cell Biochemistry and Biophysics,
74(4), 513–525.
https://doi.org/10.1007/s12013-016-0765-2
Yilmaz, F., Kutlar, A. I., & Gundogdu, M. Y. (2011). Analysis of drag effects on pulsatile blood flow in a right coronary artery by using Eulerian multiphase model.
Korea-Australia Rheology Journal,
23(2), 89–103.
https://doi.org/10.1007/s13367-011-0012-8
Yin, X., Thomas, T., & Zhang, J. (2013). Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation.
Microvascular Research,
89, 47–56.
https://doi.org/10.1016/j.mvr.2013.05.002