Bai-Gang, S., Hua-Yu, T., & Fu-Shui, L. (2014). The distinctive characteristics of combustion duration in hydrogen internal combustion engine.
International Journal of Hydrogen Energy,
39(26), 14472–14478.
https://doi.org/10.1016/J.IJHYDENE.2014.04.013
Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels.
Applied Thermal Engineering,
63(1), 66–76.
https://doi.org/10.1016/J.APPLTHERMALENG.2013.10.052
Biswas, S., Kakati, D., Chakraborti, P., & Banerjee, R. (2022). Performance-emission-stability mapping of CI engine in RCCI-PCCI modes under varying ethanol and CNG induced reactivity profiles: A comparative study through experimental and optimization perspectives.
Energy,
254, 124231.
https://doi.org/10.1016/J.ENERGY.2022.124231
Chen, Z., He, J., Chen, H., Geng, L., & Zhang, P. (2021). Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol.
Fuel,
304, 121360.
https://doi.org/10.1016/J.FUEL.2021.121360
Dahodwala, M., Joshi, S., Koehler, E. W., & Franke, M. (2014). Investigation of diesel and CNG combustion in a dual fuel regime and as an enabler to achieve RCCI combustion.
SAE Technical Papers,
1.
https://doi.org/10.4271/2014-01-1308
Dempsey, A. B., Walker, N. R., & Reitz, R. (2013). Effect of cetane improvers on gasoline, ethanol, and methanol reactivity and the implications for RCCI combustion.
SAE International Journal of Fuels and Lubricants,
6(1), 170–187.
https://doi.org/10.4271/2013-01-1678
Duraisamy, G., Rangasamy, M., & Govindan, N. (2020). A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine.
Renewable Energy,
145, 542–556.
https://doi.org/10.1016/J.RENENE.2019.06.044
Fajri, H. R., Jafari, M. J., Shamekhi, A. H., & Jazayeri, S. A. (2017). A numerical investigation of the effects of combustion parameters on the performance of a compression ignition engine toward NOx emission reduction.
Journal of Cleaner Production,
167, 140–153.
https://doi.org/10.1016/J.JCLEPRO.2017.08.146
Flynn, P. F., Durrett, R. P., Hunter, G. L., Zur Loye, A. O., Akinyemi, O. C., Dec, J. E., & Westbrook, C. K. (1999). Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation.
SAE Technical Papers.
https://doi.org/10.4271/1999-01-0509
Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine.
SAE International Journal of Engines,
3(1), 700–716.
https://doi.org/10.4271/2010-01-0864
Husted, H., Kruger, D., Fattic, G., Ripley, G., & Kelly, E. (2007). Cylinder pressure-based control of pre-mixed diesel combustion.
SAE Technical Papers.
https://doi.org/10.4271/2007-01-0773
Jamrozik, A., Tutak, W., & Grab-Rogaliński, K. (2019). An experimental study on the performance and emission of the diesel/CNG dual-fuel combustion mode in a stationary CI engine.
Energies, 12(20), 3857.
https://doi.org/10.3390/EN12203857
Jia, Z., & Denbratt, I. (2018). Experimental investigation into the combustion characteristics of a methanol-Diesel heavy duty engine operated in RCCI mode.
Fuel,
226, 745–753.
https://doi.org/10.1016/J.FUEL.2018.03.088
Kavuri, C., Paz, J., & Kokjohn, S. L. (2016). A comparison of reactivity controlled compression ignition (RCCI) and gasoline compression ignition (GCI) strategies at high load, low speed conditions.
Energy Conversion and Management,
127, 324–341.
https://doi.org/10.1016/J.ENCONMAN.2016.09.026
Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): A pathway to controlled high-efficiency clean combustion.
International Journal of Engine Research,
12(3), 209–226.
https://doi.org/10.1177/1468087411401548
Li, J., Yang, W. M., An, H., Zhou, D. Z., Yu, W. B., Wang, J. X., & Li, L. (2015). Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel.
Energy Conversion and Management,
92, 342–352.
https://doi.org/10.1016/J.ENCONMAN.2014.12.071
Li, Y., Jia, M., Liu, Y., & Xie, M. (2013). Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine.
Applied Energy,
106, 184–197.
https://doi.org/10.1016/J.APENERGY.2013.01.058
Martin, J., Boehman, A., Topkar, R., Chopra, S., Subramaniam, U., & Chen, H. (2018). Intermediate combustion modes between conventional diesel and RCCI.
SAE International Journal of Engines,
11(6), 835–860.
https://doi.org/10.4271/2018-01-0249
Merts, M., Derafshzan, S., Hyvönen, J., Richter, M., Lundgren, M., & Verhelst, S. (2021). An optical investigation of dual fuel and RCCI pilot ignition in a medium speed engine.
Fuel Communications,
9, 100037.
https://doi.org/10.1016/J.JFUECO.2021.100037
Merts, M., Fogu#x000E9; Robles, A., Monsalve-Serrano, J., Garcia, A., Lundgren, M., & Verhelst, S. (2022). Conceptual model for the start of combustion timing in the range from RCCI to Conventional dual fuel.
SAE Technical Papers,
2022.
https://doi.org/10.4271/2022-01-0468
Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion.
Progress in Energy and Combustion Science,
2–3(39), 246–283.
https://doi.org/10.1016/J.PECS.2012.09.001
Neely, G. D., Sasaki, S., Huang, Y., Leet, J. A., & Stewart, D. W. (2005). New Diesel emission control strategy to meet US tier 2 emissions regulations.
SAE Technical Papers.
https://doi.org/10.4271/2005-01-1091
Pan, S., Cai, K., Cai, M., Du, C., Li, X., Han, W., Wang, X., Liu, D., Wei, J., Fang, J., & Bao, X. (2021). Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine.
Energy,
237, 121614.
https://doi.org/10.1016/J.ENERGY.2021.121614
Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. (2020). Experimental study on combustion and emission characteristics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads.
Fuel,
261, 116434.
https://doi.org/10.1016/J.FUEL.2019.116434
Pitsch, H., Barths, H., & Peters, N. (1996). Three-dimensional modeling of nox and soot formation in DI-Diesel Engines using detailed chemistry based on the interactive flamelet approach.
SAE Technical Papers.
https://doi.org/10.4271/962057
Singh, A. P., Kumar, V., & Agarwal, A. K. (2020). Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes.
Applied Energy,
278, 115644.
https://doi.org/10.1016/J.APENERGY.2020.115644
Singh, A., Saxena, M. R., & Maurya, R. K. (2023). Investigating a deterministic yet computationally cheap combustion parameter for model predictive control of a CNG-diesel RCCI engine.
Fuel,
332, 126059.
https://doi.org/10.1016/J.FUEL.2022.126059
Wang, Y., Zhu, Z. W., Yao, M., Li, T., Zhang, W., & Zheng, Z. (2016). An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds.
Energy Conversion and Management,
124, 399–413.
https://doi.org/10.1016/J.ENCONMAN.2016.07.026
Wategave, S. P., Banapurmath, N. R., Sawant, M. S., Soudagar, M. E. M., Mujtaba, M. A., Afzal, A., Basha, J. S., Alazwari, M. A., Safaei, M. R., Elfasakhany, A., & Sajjan, A. M. (2021a). Clean combustion and emissions strategy using reactivity controlled compression ignition (RCCI) mode engine powered with CNG-Karanja biodiesel.
Journal of the Taiwan Institute of Chemical Engineers,
124, 116–131.
https://doi.org/10.1016/J.JTICE.2021.04.055
Wategave, S. P., Banapurmath, N. R., Sawant, M. S., Soudagar, M. E. M., Mujtaba, M. A., Afzal, A., Basha, J. S., Alazwari, M. A., Safaei, M. R., Elfasakhany, A., & Sajjan, A. M. (2021b). Clean combustion and emissions strategy using reactivity controlled compression ignition (RCCI) mode engine powered with CNG-Karanja biodiesel.
Journal of the Taiwan Institute of Chemical Engineers,
124, 116–131.
https://doi.org/10.1016/J.JTICE.2021.04.055
Yusaf, T. F., Buttsworth, D. R., Saleh, K. H., & Yousif, B. F. (2010). CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network.
Applied Energy,
87(5), 1661–1669.
https://doi.org/10.1016/J.APENERGY.2009.10.009
Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion.
International Journal of Energy Research,
33(1), 8–28.
https://doi.org/10.1002/ER.1464