Integration of RCCI and CDF Combustion in Conventional Diesel Engine Using CNG-diesel Fuels: An Experimental Study

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering-Marwadi University, Rajkot, Gujarat, 360003, India

2 Department of Mechanical Engineering-NIT Agartala, Agartala, Tripura, 799046, India

Abstract

An experimental investigation is carried out on conventional compression ignition engines' combustion, performance, and emission characteristics using Conventional Dual Fuel (CDF) combustion and reactivity-controlled compression ignition (RCCI) combustion strategies. The experiments are performed on a variable-speed production-grade diesel engine converted to a research engine. Comparative combustion analysis shows that RCCI combustion is more stable and shows a consistent ignition delay across all engine speeds. The exhaust gas temperature of RCCI combustion is lower than that of CDF combustion and is in the range of Conventional Diesel Combustion (CDC). CDC shows better brake thermal efficiency (BTE) than CDF and RCCI combustion across all engine speeds, followed by RCCI combustion. The lowest BTE is observed in CDF combustion. Emission results show that RCCI combustion produced significantly lower NOx emissions than CDC at low engine speed without much HC and CO emissions increment. RCCI combustion does not effectively reduce NOx emissions and produces higher HC and CO emissions at high engine speeds. A BTE-NOx trade-off analysis is also carried out, demonstrating the suitability of RCCI combustion at low engine speed. CDC under high engine speed conditions and in the transition region of medium engine speed CDF combustion is more favorable to reduce NOx emission.

Keywords

Main Subjects


Aydın, H. (2021). An innovative research on variable compression ratio in RCCI strategy on a power generator diesel engine using CNG-safflower biodiesel. Energy, 231, 121002. https://doi.org/10.1016/J.ENERGY.2021.121002
Bai-Gang, S., Hua-Yu, T., & Fu-Shui, L. (2014). The distinctive characteristics of combustion duration in hydrogen internal combustion engine. International Journal of Hydrogen Energy, 39(26), 14472–14478. https://doi.org/10.1016/J.IJHYDENE.2014.04.013
Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66–76. https://doi.org/10.1016/J.APPLTHERMALENG.2013.10.052
Bhagatwala, A., Sankaran, R., Kokjohn, S., & Chen, J. H. (2015). Numerical investigation of spontaneous flame propagation under RCCI conditions. Combustion and Flame, 162(9), 3412–3426. https://doi.org/10.1016/J.COMBUSTFLAME.2015.06.005
Biswas, S., Kakati, D., Chakraborti, P., & Banerjee, R. (2022). Performance-emission-stability mapping of CI engine in RCCI-PCCI modes under varying ethanol and CNG induced reactivity profiles: A comparative study through experimental and optimization perspectives. Energy, 254, 124231. https://doi.org/10.1016/J.ENERGY.2022.124231
Chen, Z., He, J., Chen, H., Geng, L., & Zhang, P. (2021). Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel, 304, 121360. https://doi.org/10.1016/J.FUEL.2021.121360
Dahodwala, M., Joshi, S., Koehler, E. W., & Franke, M. (2014). Investigation of diesel and CNG combustion in a dual fuel regime and as an enabler to achieve RCCI combustion. SAE Technical Papers, 1. https://doi.org/10.4271/2014-01-1308
Dempsey, A. B., Walker, N. R., & Reitz, R. (2013). Effect of cetane improvers on gasoline, ethanol, and methanol reactivity and the implications for RCCI combustion. SAE International Journal of Fuels and Lubricants, 6(1), 170–187. https://doi.org/10.4271/2013-01-1678
Duraisamy, G., Rangasamy, M., & Govindan, N. (2020). A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renewable Energy, 145, 542–556. https://doi.org/10.1016/J.RENENE.2019.06.044
Fajri, H. R., Jafari, M. J., Shamekhi, A. H., & Jazayeri, S. A. (2017). A numerical investigation of the effects of combustion parameters on the performance of a compression ignition engine toward NOx emission reduction. Journal of Cleaner Production, 167, 140–153. https://doi.org/10.1016/J.JCLEPRO.2017.08.146
Flynn, P. F., Durrett, R. P., Hunter, G. L., Zur Loye, A. O., Akinyemi, O. C., Dec, J. E., & Westbrook, C. K. (1999). Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation. SAE Technical Papers. https://doi.org/10.4271/1999-01-0509
Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE International Journal of Engines, 3(1), 700–716. https://doi.org/10.4271/2010-01-0864
Heywood, J. B. (2018). Internal combustion engine fundamentals (2nd Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9781260116106
Husted, H., Kruger, D., Fattic, G., Ripley, G., & Kelly, E. (2007). Cylinder pressure-based control of pre-mixed diesel combustion. SAE Technical Papershttps://doi.org/10.4271/2007-01-0773
Işık, M. Z., & Aydın, H. (2016). Analysis of ethanol RCCI application with safflower biodiesel blends in a high load diesel power generator. Fuel, 184, 248–260. https://doi.org/10.1016/J.FUEL.2016.07.017
Jamrozik, A., Tutak, W., & Grab-Rogaliński, K. (2019). An experimental study on the performance and emission of the diesel/CNG dual-fuel combustion mode in a stationary CI engine. Energies, 12(20), 3857. https://doi.org/10.3390/EN12203857
Jia, Z., & Denbratt, I. (2018). Experimental investigation into the combustion characteristics of a methanol-Diesel heavy duty engine operated in RCCI mode. Fuel, 226, 745–753. https://doi.org/10.1016/J.FUEL.2018.03.088
Kavuri, C., Paz, J., & Kokjohn, S. L. (2016). A comparison of reactivity controlled compression ignition (RCCI) and gasoline compression ignition (GCI) strategies at high load, low speed conditions. Energy Conversion and Management, 127, 324–341. https://doi.org/10.1016/J.ENCONMAN.2016.09.026
Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): A pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209–226. https://doi.org/10.1177/1468087411401548
Li, J., Yang, W. M., An, H., Zhou, D. Z., Yu, W. B., Wang, J. X., & Li, L. (2015). Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel. Energy Conversion and Management, 92, 342–352. https://doi.org/10.1016/J.ENCONMAN.2014.12.071
Li, Y., Jia, M., Liu, Y., & Xie, M. (2013). Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine. Applied Energy, 106, 184–197. https://doi.org/10.1016/J.APENERGY.2013.01.058
Martin, J., Boehman, A., Topkar, R., Chopra, S., Subramaniam, U., & Chen, H. (2018). Intermediate combustion modes between conventional diesel and RCCI. SAE International Journal of Engines, 11(6), 835–860. https://doi.org/10.4271/2018-01-0249
Merts, M., Derafshzan, S., Hyvönen, J., Richter, M., Lundgren, M., & Verhelst, S. (2021). An optical investigation of dual fuel and RCCI pilot ignition in a medium speed engine. Fuel Communications, 9, 100037. https://doi.org/10.1016/J.JFUECO.2021.100037
Merts, M., Fogu#x000E9; Robles, A., Monsalve-Serrano, J., Garcia, A., Lundgren, M., & Verhelst, S. (2022). Conceptual model for the start of combustion timing in the range from RCCI to Conventional dual fuel. SAE Technical Papers, 2022. https://doi.org/10.4271/2022-01-0468
Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 2–3(39), 246–283. https://doi.org/10.1016/J.PECS.2012.09.001
Neely, G. D., Sasaki, S., Huang, Y., Leet, J. A., & Stewart, D. W. (2005). New Diesel emission control strategy to meet US tier 2 emissions regulations. SAE Technical Papers. https://doi.org/10.4271/2005-01-1091
Pan, S., Cai, K., Cai, M., Du, C., Li, X., Han, W., Wang, X., Liu, D., Wei, J., Fang, J., & Bao, X. (2021). Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine. Energy, 237, 121614. https://doi.org/10.1016/J.ENERGY.2021.121614
Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. (2020). Experimental study on combustion and emission characteristics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads. Fuel, 261, 116434. https://doi.org/10.1016/J.FUEL.2019.116434
Pitsch, H., Barths, H., & Peters, N. (1996). Three-dimensional modeling of nox and soot formation in DI-Diesel Engines using detailed chemistry based on the interactive flamelet approach. SAE Technical Papers. https://doi.org/10.4271/962057
Singh, A. P., Kumar, V., & Agarwal, A. K. (2020). Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes. Applied Energy, 278, 115644. https://doi.org/10.1016/J.APENERGY.2020.115644
Singh, A., Saxena, M. R., & Maurya, R. K. (2023). Investigating a deterministic yet computationally cheap combustion parameter for model predictive control of a CNG-diesel RCCI engine. Fuel, 332, 126059. https://doi.org/10.1016/J.FUEL.2022.126059
Wang, Y., Zhu, Z. W., Yao, M., Li, T., Zhang, W., & Zheng, Z. (2016). An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. Energy Conversion and Management, 124, 399–413. https://doi.org/10.1016/J.ENCONMAN.2016.07.026
Wategave, S. P., Banapurmath, N. R., Sawant, M. S., Soudagar, M. E. M., Mujtaba, M. A., Afzal, A., Basha, J. S., Alazwari, M. A., Safaei, M. R., Elfasakhany, A., & Sajjan, A. M. (2021a). Clean combustion and emissions strategy using reactivity controlled compression ignition (RCCI) mode engine powered with CNG-Karanja biodiesel. Journal of the Taiwan Institute of Chemical Engineers, 124, 116–131. https://doi.org/10.1016/J.JTICE.2021.04.055
Wategave, S. P., Banapurmath, N. R., Sawant, M. S., Soudagar, M. E. M., Mujtaba, M. A., Afzal, A., Basha, J. S., Alazwari, M. A., Safaei, M. R., Elfasakhany, A., & Sajjan, A. M. (2021b). Clean combustion and emissions strategy using reactivity controlled compression ignition (RCCI) mode engine powered with CNG-Karanja biodiesel. Journal of the Taiwan Institute of Chemical Engineers, 124, 116–131. https://doi.org/10.1016/J.JTICE.2021.04.055
Yusaf, T. F., Buttsworth, D. R., Saleh, K. H., & Yousif, B. F. (2010). CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Applied Energy, 87(5), 1661–1669. https://doi.org/10.1016/J.APENERGY.2009.10.009
Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8–28. https://doi.org/10.1002/ER.1464