Cindori, M., Čajić, P., Džijan, I., Juretić, F., & Kozmar, H. (2022). A comparison of major steady RANS approaches to engineering ABL simulations.
Journal of Wind Engineering and Industrial Aerodynamics, 221, 104867.
https://doi.org/10.1016/j.jweia.2021.104867
Bardera, R.; Matias, J. C.; García-Magariño, A. Experimental validation of aerodynamic computational results in the aft-deck of a simplified frigate shape (SFS2). A: MARINE VIII. MARINE VIII: proceedings of the VIII International Conference on Computational Methods in Marine Engineering. CIMNE, 2019, p. 405-416. ISBN 978-84-949194-3-5
Bogstad, M. C., Habashi, W. G., Akel, I., Ait-Ali-Yahia, D., Giannias, N., & Longo, V. (2002). Computational-fluid-dynamics based advanced ship-airwake database for helicopter flight simulators.
Journal of Aircraft,
39(5), 830–838.
https://doi.org/10.2514/2.3003
Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications.
Journal of Fluids Engineering,
130(7).
https://doi.org/10.1115/1.2960953
Cosner, R., Oberkampf, B., Rumsey, C., Rahaim, C., & Shih, T. (2006). AIAA committee on standards for computational fluid dynamics: status and plans. 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006-889
Dogrul, A. (2022). Numerical prediction of scale effects on the propulsion performance of JOUBERT BB2 submarine.
Brodogradnja : Teorija i Praksa Brodogradnje i Pomorske Tehnike,
73(2), 17–42.
https://doi.org/10.21278/brod73202
Dooley, G. M., Krebill, A. F., Martin, J. E., Buchholz, J. H. J., & Carrica, P. M. (2020a). Structure of a Ship Airwake at Multiple Scales.
AIAA Journal,
58(5), 2005–2013.
https://doi.org/10.2514/1.J058994
Gnanamanickam, E. P., Zhang, Z., Seth, D., & Leishman, J. G. (2020, June 15).
Structure of the ship airwake in a simulated atmospheric boundary layer. AIAA Aviation 2020 Forum. Aiaa Aviation 2020 Forum, Virtual Event.
https://doi.org/10.2514/6.2020-2702
Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model.
Flow, Turbulence and Combustion,
88(3), 431–449.
https://doi.org/10.1007/s10494-011-9378-4
ITTC. (2014). 7.5-03-01-01 uncertainty analysis in CFD, verification and validation methodology and procedures. ITTC - Recommended Procedures and Guidelines.
Li, T., Wang, Y. B., Zhao, N., & Qin, N. (2020). An investigation of ship airwake over the frigate afterbody.
International Journal of Modern Physics B,
34(14n16), 2040069.
https://doi.org/10.1142/S021797922040069X
Major, D., Schmitz, S., Shipman, J. D., Bin, J., & Polsky, S. (2023, June 12).
Assessment of numerical methods for ship airwake simulations with unsteady atmospheric boundary-layer effects. AIAA AVIATION 2023 Forum. AIAA AVIATION 2023 Forum, San Diego, CA and Online.
https://doi.org/10.2514/6.2023-3692
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598–1605.
https://doi.org/10.2514/3.12149
Menter, F. R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective.
International Journal of Computational Fluid Dynamics,
23(4), 305–316.
https://doi.org/10.1080/10618560902773387
Nisham, A., Terziev, M., Tezdogan, T., Beard, T., & Incecik, A. (2021). Prediction of the aerodynamic behaviour of a full-scale naval ship in head waves using Detached Eddy Simulation.
Ocean Engineering,
222, 108583.
https://doi.org/10.1016/j.oceaneng.2021.108583
Owen, I., Lee, R., Wall, A., & Fernandez, N. (2021). The NATO generic destroyer – a shared geometry for collaborative research into modelling and simulation of shipboard helicopter launch and recovery.
Ocean Engineering,
228, 108428.
https://doi.org/10.1016/j.oceaneng.2020.108428
Owen, I., Scott, P., & White, M. (2014). The effect of ship size on the flying qualities of maritime helicopters. In the American Helicopter Society 70th Annual Forum, Montreal, Quebec, Canada.
Ren, X., Su, H., Yu, H. H., & Yan, Z. (2022). Wall-modeled large eddy simulation and detached eddy simulation of wall-mounted separated flow via OpenFOAM.
Aerospace,
9(12), 12.
https://doi.org/10.3390/aerospace9120759
Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model.
Journal of Wind Engineering and Industrial Aerodynamics,
46–47, 145–153.
https://doi.org/10.1016/0167-6105(93)90124-7
Richardson, L. F. (1911). The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210, 307–357.
Rosenfeld, N., Kimmel, K., & Sydney, A. J. (2015, January 5).
Investigation of ship topside modeling practices for wind tunnel experiments. 53rd AIAA Aerospace Sciences Meeting. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida.
https://doi.org/10.2514/6.2015-0245
Sarı, S., Dogrul, A., & Bayraktar, S. (2022). The aerodynamic wind loads of a naval surface combatant in model scale. New Technologies, Development and Application V, Isak Karabegović, Ahmed Kovačević, Sadko Mandžuka, Editor, Springer Nature.
Seth, D., Zhang, Z., Gnanamanickam, E. P., & Leishman, J. G. (2020, June 15). Time-resolved PIV measurements of a ship airwake in a simulated atmospheric boundary layer.
AIAA Aviation 2020 Forum. AIAA Aviation 2020 Forum, Virtual Event.
https://doi.org/10.2514/6.2020-2701
Setiawan, H., Kevin, Philip, J., & Monty, J. P. (2022). Turbulence characteristics of the ship air-wake with two different topside arrangements and inflow conditions.
Ocean Engineering,
260, 111931.
https://doi.org/10.1016/j.oceaneng.2022.111931
Sezen, S., Delen, C., Dogrul, A., & Atlar, M. (2021). An investigation of scale effects on the self-propulsion characteristics of a submarine.
Applied Ocean Research,
113, 102728.
https://doi.org/10.1016/j.apor.2021.102728
Shipman, J. D., & Bin, J. (2021.).
Atmospheric boundary layer turbulence simulation for ship airwake CFD applications. AIAA Aviation 2021 Forum. american institute of aeronautics and astronautics.
https://doi.org/10.2514/6.2021-2481
Shukla, S., Singh, S. N., Sinha, S. S., & Vijayakumar, R. (2021). Comparative assessment of URANS, SAS and DES turbulence modeling in the predictions of massively separated ship airwake characteristics.
Ocean Engineering,
229, 108954.
https://doi.org/10.1016/j.oceaneng.2021.108954
Spalart, P. R. (2001). Young-person’s guide to detached-eddy simulation grids (NASA/CR-2001-211032).
Su, D., Xu, G., Huang, S., & Shi, Y. (2019). Numerical investigation of rotor loads of a shipborne coaxial-rotor helicopter during a vertical landing based on moving overset mesh method.
Engineering Applications of Computational Fluid Mechanics,
13(1), 309–326.
https://doi.org/10.1080/19942060.2019.1585390
Taymourtash, N., Zanotti, A., Gibertini, G., & Quaranta, G. (2022). Unsteady load assessment of a scaled-helicopter model in a ship airwake.
Aerospace Science and Technology, 107583.
https://doi.org/10.1016/j.ast.2022.107583
Travin, A., Shur, M., Strelets, M., & Spalart, P. (2000). Detached-eddy simulations past a circular cylinder.
Flow, Turbulence and Combustion,
63(1), 293–313.
https://doi.org/10.1023/A:1009901401183
Wall, A., Thornhill, E., Barber, H., McTavish, S., & Lee, R. (2022). Experimental investigations into the effect of at-sea conditions on ship airwake characteristics.
Journal of Wind Engineering and Industrial Aerodynamics,
223, 104933.
https://doi.org/10.1016/j.jweia.2022.104933
Watson, N. A., White, M., & Owen, I. (2019, June 17).
Experimental validation of the unsteady CFD-generated airwake of the HMS queen elizabeth aircraft carrier. AIAA Aviation 2019 Forum. AIAA Aviation 2019 Forum, Dallas, Texas, USA.
https://doi.org/10.2514/6.2019-3029
Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd edition). DCW Industries.
Yuan, W., Lee, R., & Wall, A. (2016, September 23). Combined numerical and experimental simulations of unsteady ship airwakes. 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Korea.
Zheng, W., Yan, C., Liu, H., & Luo, D. (2016). Comparative assessment of SAS and DES turbulence modeling for massively separated flows.
Acta Mechanica Sinica,
32(1), 12–21.
https://doi.org/10.1007/s10409-015-0505-7
Zhu, N., Zhang, Z., Gnanamanickam, E., & Gordon Leishman, J. (2023, January 23).
Effects of a Simulated Atmospheric Boundary Layer on Ship Airwakes. AIAA Scitech 2023 Forum.
https://doi.org/10.2514/6.2023-0470
Zhu, N., Zhang, Z., Gnanamanickam, E., & Leishman, J. G. (2022, January 3).
Dynamics of large-scale flow structures within ship airwakes. AIAA Scitech 2022 Forum.
https://doi.org/10.2514/6.2022-2532