Aktas, B., Atlar, M., Fitzsimmons, P., & Shi, W. (2018). An advanced joint time-frequency analysis procedure to study cavitation-induced noise by using standard series propeller data.
Ocean Engineering, 170, 329-350.
https://doi.org/10.1016/j.oceaneng.2018.10.026
Arabnejad, M. H., Svennberg, U., & Bensow, R. E. (2021). Numerical assessment of cavitation erosion risk using incompressible simulation of cavitating flows.
Wear, 464, 203529.
https://doi.org/10.1016/j.wear.2020.203529
Cao, W., Yang, X., & Jia, Z. (2022). Numerical simulation of cavitation flow in a low specific-speed centrifugal pump with different diameters of balance holes.
Journal of Marine Science and Engineering, 10(5), 619.
https://doi.org/10.3390/jmse10050619
Cheng, X., Chang, Z., & Jiang, Y. (2020). Study on the influence of the specific area of balance hole on cavitation performance of high-speed centrifugal pump.
Journal of Mechanical Science and Technology, 34, 3325-3334.
https://doi.org/10.1007/s12206-020-0725-z
Cui, B. L., Han, X. T., & An, Y. T. (2022). Numerical simulation of unsteady cavitation flow in a low-specific-speed centrifugal pump with an inducer.
Journal of Marine Science and Engineering, 10(5), 630.
https://doi.org/10.3390/jmse10050630
Gangipamula, R., Ranjan, P., & Patil, R. S. (2022). Study on fluid dynamic characteristics of a low specific speed centrifugal pump with emphasis on trimming operations.
International Journal of Heat and Fluid Flow, 95, 108952.
https://doi.org/10.1016/j.ijheatfluidflow.2022.108952
Gao, B., Guo, P., Zhang, N., Li, Z., & Yang, M. (2017). Experimental investigation on cavitating flow induced vibration characteristics of a low specific speed centrifugal pump.
Shock and Vibration, 2017.
https://doi.org/10.1155/2017/6568930
Haosheng, C., Jiang, L., Darong, C., & Jiadao, W. (2008). Damages on steel surface at the incubation stage of the vibration cavitation erosion in water.
Wear, 265(5-6), 692-698.
https://doi.org/10.1016/j.wear.2007.12.011
Hu, Q. X., Yang, Y., & Shi, W. D. (2020). Cavitation simulation of centrifugal pump with different inlet attack angles.
International Journal of Simulation Modelling, 19(2), 279-290.
https://doi.org/10.2507/ISIMM19-2-516
Huang, M., Kim, K., & Suh, S. H. (2018). Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump.
Journal of Mechanical Science and Technology, 32(3), 1071-1078.
https://doi.org/10.1007/S12206-018-0209-6
Köksal, Ç. S., Usta, O., Aktas, B., Atlar, M., & Korkut, E. (2021). Numerical prediction of cavitation erosion to investigate the effect of wake on marine propellers.
Ocean Engineering, 239, 109820.
https://doi.org/10.1016/j.oceaneng.2021.109820
Li, L. M., Wang, Z. D., Li, X. J., Wang, Y. P., & Zhu, Z. C. (2021). Very large eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model.
China Ocean Engineering, 35(3), 361-371.
https://doi.org/10.1007/s13344-021-0033-0
Li, L., Pei, C., Wang, Z., Lin, Z., Li, X., & Zhu, Z. (2024). Assessment of cavitation erosion risk by Eulerian–Lagrangian multiscale modeling. International
Journal of Mechanical Sciences, 262, 108735.
https://doi.org/10.1016/j.ijmecsci.2023.108735
Li, Z. R., Pourquie, M., & Van Terwisga, T. (2014). Assessment of cavitation erosion with a URANS method.
Journal of Fluids Engineering, 136(4), 041101.
https://doi.org/10.1115/1.4026195
Lin, Y., Li, X., Zhu, Z., Wang, X., Lin, T., & Cao, H. (2022). An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge.
Energy, 246, 123323.
https://doi.org/10.1016/j.energy.2022.123323
Luo, X., Xie, H., Feng, J., Ge, Z., & Zhu, G. (2022). Influence of the balance hole on the performance of a gas–liquid two–phase centrifugal pump.
Ocean Engineering, 244, 110316.
https://doi.org/10.1016/j.oceaneng.2021.110316
Luo, X., Zhang, Y., Peng, J., Xu, H., & Yu, W. (2008). Impeller inlet geometry effect on performance improvement for centrifugal pumps.
Journal of mechanical science and technology, 22, 1971-1976.
https://doi.org/10.1007/s12206-008-0741-x
Wang, D. W., Liu, Z. L., Han, W., & Fu, Y. (2021). Effect of adjusting balance hole to cavitation area on cavitation performance of a centrifugal pump.
International Journal of Fluid Machinery and Systems, 14(3), 289-299.
https://doi.org/10.5293/IJFMS.2021.14.3.289
Wang, W. T., Lu, H., & Meng, G. Q. Q. G. (2018, July).
Pressure fluctuation characteristics induced by cavitation in a centrifugal pump [Conference session]. Asian Working Group- IAHR's Symposium on Hydraulic Machinery and Systems, Beijing, China.
https://doi.org/10.1088/1755-1315/163/1/012040
Wang, Z., Cheng, H., Bensow, R. E., Peng, X., & Ji, B. (2023). Numerical assessment of cavitation erosion risk on the Delft twisted hydrofoil using a hybrid Eulerian-Lagrangian strategy.
International Journal of Mechanical Sciences, 259, 108618.
https://doi.org/10.1016/j.ijmecsci.2023.108618
Wang, Z., Li, L., Li, X., & Zhu, Z. (2022, April).
Numerical simulation of cavitating flow around a twist hydrofoil focusing on the erosion behaviour. Journal of Physics: Conference Series (Vol. 2217, No. 1, p. 012011). IOP Publishing.
https://doi.org/10.1088/1742-6596/2217/1/012011
Wei, Y., Yang, Y., Zhou, L., Jiang, L., Shi, W., & Huang, G. (2021). Influence of impeller gap drainage width on the performance of low specific speed centrifugal pump.
Journal of Marine Science and Engineering, 9(2), 106.
https://doi.org/10.3390/jmse9020106
Zhang, J., Li, G., Mao, J., Yuan, S., Qu, Y., & Jia, J. (2018). Effects of the outlet position of splitter blade on the flow characteristics in low-specific-speed centrifugal pump.
Advances in Mechanical Engineering, 10(7), 1687814018789525.
https://doi.org/10.1177/1687814018789525
Zhao, J. J., Mu, J. G., Zheng, S. H., Lu, H. Q., & Wang, H. (2012). The impact of balance hole radial position of centrifugal pump on axial force and external characteristics.
Applied Mechanics and Materials, 130, 1691-1695.
https://doi.org/10.4028/www.scientific.net/AMM.130-134.1691
Zhao, W., Yu, J., Xu, Y., Xu, Z., & Wang, G. (2020). Effect of hub-fitted tiny blade in centrifugal pump on cavitation suppression.
Journal of Harbin Engineering University, 41(12), 1827-1833.
http://doi.org/10.11990/jheu.201905025
Zhu, H., Qiu, N., Wang, C., Si, Q., Wu, J., Deng, F., & Liu, X. (2021). Prediction of cavitation evolution and cavitation erosion on centrifugal pump blades by the DCM-RNG method.
Scanning, 2021.
https://doi.org/10.1155/2021/6498451
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004, May). A two-phase flow model for predicting cavitation dynamics. Fifth international conference on multiphase flow (Vol. 152). Yokohama, Japan.