Ali, A. R. I., & Salam, B. (2020). A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application.
SN Applied Sciences,
2(10).
https://doi.org/10.1007/s42452-020-03427-1
Alihosseini, Y., Zabetian Targhi, M., Heyhat, M. M., & Ghorbani, N. (2020). Effect of a micro heat sink geometric design on thermo-hydraulic performance: A review.
Applied Thermal Engineering,
170 (September 2019), 114974.
https://doi.org/10.1016/j.applthermaleng.2020.114974
Andraos, J. (1996). On the propagation of statistical errors for a function of several variables.
Journal of Chemical Education 73(2), 150–154.
https://doi.org/10.1021/ed073p150
Asadi, A. (2018). A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid.
Energy Conversion and Management,
175(August), 1–10.
https://doi.org/10.1016/j.enconman.2018.08.101
Azizi, Z., Alamdari, A., & Malayeri, M. R. (2015). Convective heat transfer of Cu-water nanofluid in a cylindrical microchannel heat sink.
Energy Conversion and Management,
101, 515–524.
https://doi.org/10.1016/j.enconman.2015.05.073
Behi, M., Shakorian-poor, M., Mirmohammadi, S. A., Behi, H., Rubio, J. I., Nikkam, N., Farzaneh-Gord, M., Gan, Y., & Behnia, M. (2020). Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes.
Energy,
193, 116658.
https://doi.org/10.1016/j.energy.2019.116658
Bock Choon Pak, Y. I. C. (2013). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide.
Experimental Heat Transfer : A Journal of , Thermal Energy Transport , Storage , and Conversion,
January 2013, 37–41.
https://doi.org/10.1080/08916159808946559
Bowers, J., Cao, H., Qiao, G., Li, Q., Zhang, G., Mura, E., & Ding, Y. (2018). Flow and heat transfer behaviour of nanofluids in microchannels.
Progress in Natural Science: Materials International,
28(2), 225–234.
https://doi.org/10.1016/j.pnsc.2018.03.005
Chabi, A. R., Zarrinabadi, S., Peyghambarzadeh, S. M., Hashemabadi, S. H., & Salimi, M. (2017). Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
53(2), 661–671.
https://doi.org/10.1007/s00231-016-1851-0
Chai, L., Xia, G., Zhou, M., Li, J., & Qi, J. (2013). Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers.
Applied Thermal Engineering, 51(1–2), 880–889.
https://doi.org/10.1016/j.applthermaleng.2012.10.037
Dahiya, A., Amer, M., Sajjad, U., Borah, P., Sehgal, S. S., & Singh, H. (2020). An experimental study on microchannel heat sink via different manifold arrangements.
SN Applied Sciences,
2(1), 1–11.
https://doi.org/10.1007/s42452-019-1784-6
Datta, A., Sanyal, D., Agrawal, A., & Das, A. K. (2019). A review of liquid flow and heat transfer in microchannels with emphasis to electronic cooling.
Sadhana - Academy Proceedings in Engineering Sciences, 44(12). Springer India.
https://doi.org/10.1007/s12046-019-1201-2
Deepak Selvakumar, R., & Dhinakaran, S. (2017). Effective viscosity of nanofluids — A modified Krieger–Dougherty model based on particle size distribution (PSD) analysis.
Journal of Molecular Liquids,
225, 20–27.
https://doi.org/10.1016/j.molliq.2016.10.137
Kandlikar, S. G., & Grande, W. J. (2003). Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology.
Heat Transfer Engineering,
24(1), 3–17.
https://doi.org/10.1080/01457630304040
Karimzadehkhouei, M., Sadaghiani, A. K., Motezakker, A. R., Akgönül, S., Ozbey, A., Şendur, K., Mengüç, M. P., & Koşar, A. (2019). Experimental and numerical investigation of inlet temperature effect on convective heat transfer of γ-Al2O3/Water nanofluid flows in microtubes.
Heat Transfer Engineering,
40(9–10), 738–752.
https://doi.org/10.1080/01457632.2018.1442305
Krieger, I. M., & Dougherty, T. J. (1959). A Mechanism for non-newtonian flow in suspensions of rigid spheres.
Transactions of the Society of Rheology,
3(1), 137–152.
https://doi.org/10.1122/1.548848
Kumaraguruparan, G., Kumaran, R. M., Sornakumar, T., & Sundararajan, T. (2011). A numerical and experimental investigation of flow maldistribution in a micro-channel heat sink.
International Communications in Heat and Mass Transfer,
38(10), 1349–1353.
https://doi.org/10.1016/j.icheatmasstransfer.2011.08.020
Lodhi, M. S., Sheorey, T., & Dutta, G. (2020). Single-phase fluid flow and heat transfer characteristics of nanofluid in a circular microchannel: Development of flow and heat transfer correlations.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
234(18), 3689–3708.
https://doi.org/10.1177/0954406220916537
Mohammed Adham, A., Mohd-Ghazali, N., & Ahmad, R. (2013). Thermal and hydrodynamic analysis of microchannel heat sinks: A review.
Renewable and Sustainable Energy Reviews,
21, 614–622.
https://doi.org/10.1016/j.rser.2013.01.022
Nikkhah, V., & Nakhjavani, S. (2019). Thermal performance of a micro heat exchanger (MHE) working with zirconia-based nanofluids for industrial cooling.
International Journal of Industrial Chemistry,
10(2), 193–204.
https://doi.org/10.1007/s40090-019-0183-6
Peng, X. F., & Peterson, G. P. (1996). Convective heat transfer and flow friction for water flow in microchannel structures.
International Journal of Heat and Mass Transfer,
39(12), 2599–2608.
https://doi.org/10.1016/0017-9310(95)00327-4
Peyghambarzadeh, S. M., Hashemabadi, S. H., Chabi, A. R., & Salimi, M. (2014). Performance of water based CuO and Al2O3 nanofluids in a Cu-Be alloy heat sink with rectangular microchannels.
Energy Conversion and Management,
86, 28–38.
https://doi.org/10.1016/j.enconman.2014.05.013
Prasher, R., Bhattacharya, P., & Phelan, P. E. (2006). Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids.
Journal of Heat Transfer,
128(6), 588–595.
https://doi.org/10.1115/1.2188509
Ramesh, K. N., Sharma, T. K., & Rao, G. A. P. (2021). Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review.
Archives of Computational Methods in Engineering,
28, 3135-3165.
https://doi.org/10.1007/s11831-020-09495-1
Roday, A. P., & Jensen, M. K. (2009). A review of the critical heat flux condition in mini-and microchannels.
Journal of Mechanical Science and Technology,
23(9), 2529–2547.
https://doi.org/10.1007/s12206-009-0711-y
Rostami, A. A., Mujumdar, A. S., & Saniei, N. (2002). Flow and heat transfer for gas flowing in microchannels: A review.
Heat and Mass Transfer/Waerme- Und Stoffuebertragung,
38(4–5), 359–367.
https://doi.org/10.1007/s002310100247
Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2011). Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties.
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
388(1–3), 41–48.
https://doi.org/10.1016/j.colsurfa.2011.08.005
Vijayalakshmi, K., Anoop, K. B., Patel, H. E., Harikrishna, P. V., Sundararajan, T., & Das, S. K. (2009). Effects of compressibility and transition to turbulence on flow through microchannels.
International Journal of Heat and Mass Transfer,
52(9–10), 2196–2204.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.056
Xu, B., Ooi, K. T., Wong, N. T., & Choi, W. K. (2000). Experimental investigation of flow friction for liquid flow in microchannels.
International Communications in Heat and Mass Transfer,
27(8), 1165–1176.
https://doi.org/10.1016/S0735-1933(00)00203-7
Yadav, V., Kumar, R., & Narain, A. (2019). Mitigation of flow maldistribution in parallel microchannel heat sink.
IEEE Transactions on Components, Packaging and Manufacturing Technology,
9(2), 247–261.
https://doi.org/10.1109/TCPMT.2018.2851543
Yamashita, N., & Fukushima, M. (2001).
On the rate of convergence of the levenberg-marquardt method. In: Alefeld, G., Chen, X. (Eds) Topics in Numerical Analysis. Computing Supplementa, vol 15. Springer, Vienna.
https://doi.org/10.1007/978-3-7091-6217-0_18
Zhang, H., Shao, S., Xu, H., & Tian, C. (2013). Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel - Experimental results and correlations.
Applied Thermal Engineering,
61(2), 86–92.
https://doi.org/10.1016/j.applthermaleng.2013.07.026