Parametric Analysis of Cooling of Air Inside a Ventilated Enclosure - A Convenient Solution to Achieve Single Room Multiple Thermal Zones for Indoor Farming

Document Type : Regular Article

Authors

1 School of Mechanical Engineering, VIT Vellore, Tamilnadu, 632014, India

2 VIT School of Agricultural Innovations and Advanced Learning, VIT Vellore, Tamilnadu, 632014, India

Abstract

This paper explores the potential of a cylindrical enclosure with vent holes to create and maintain the desired thermal environment for indoor farming. Different thermal zones can be made in a single room when such enclosures are used in multiple numbers in a single room. A comparative analysis of twelve different air cooling/heating configurations was conducted. Each cylindrical enclosure is air-filled, with two heat sinks facing each other and vent holes in the top and bottom surfaces. Six configurations had heat sinks oriented vertically, and the other six had heat sinks inclined at 45°. These configurations (vertical and inclined heat sinks) have been studied for different heat sink temperatures and sidewall heat flux conditions. The numerical simulations were conducted using ANSYS-Fluent. The studies have shown that different thermal environments can be created inside the enclosure, and cooling can be achieved with sufficient air exchange through vent holes. The instabilities due to buoyancy-driven flow are found to be necessary for air exchange through vent holes. Validation studies have shown that the heat flux from the sidewall should be considered, even if it is an excellent thermal insulator.

Keywords

Main Subjects


Adrian, B. (2013). Convection Heat Transfer (4th ed.). Wiley. https://doi.org/10.1002/9781118671627
Afshari, F. (2021). Experimental and numerical investigation on thermoelectric coolers for comparing air-to-water to air-to-air refrigerators. Journal of Thermal Analysis and Calorimetry, 144(3), 855–868. https://doi.org/10.1007/s10973-020-09500-6
Afshari, F., Mandev, E., Muratçobanoğlu, B., Yetim, A. F., & Ceviz, M. A. (2023). Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger. Renewable Energy, 207(February), 253–265. https://doi.org/10.1016/j.renene.2023.02.092
Ashrae (2021). Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), US. https://www.ashrae.org/technical-resources/ashrae-handbook/description-2021-ashrae-handbook-fundamentals
Astrain, D., Vián, J. G., & Albizua, J. (2005). Computational model for refrigerators based on Peltier effect application. Applied Thermal Engineering, 25(17–18), 3149–3162. https://doi.org/10.1016/j.applthermaleng.2005.04.003
Bharadwaj, K. K., & Das, D. (2017). Global instability analysis and experiments on buoyant plumes. Journal of Fluid Mechanics, 832, 97–145. https://doi.org/10.1017/jfm.2017.665
Bhattacharya, P., & Das, S. (2015). A study on steady natural convective heat transfer inside a square cavity for different values of rayleigh and nusselt numbers. Journal of Applied Fluid Mechanics, 8(3), 635–640. https://doi.org/10.18869/acadpub.jafm.67.222.22837
Bouras, A., Bouabdallah, S., Ghernaout, B., Arıcı, M., Cherif, Y., & Sassine, E. (2021). 3D numerical simulation of turbulent mixed convection in a cubical cavity containing a hot block. Journal of Applied Fluid Mechanics, 14(6), 1869–1880. https://doi.org/10.47176/JAFM.14.06.32604
Daimon, S., Iguchi, R., Hioki, T., Saitoh, E., & Uchida, K. I. (2016). Thermal imaging of spin Peltier effect. Nature Communications, 7, 1–7. https://doi.org/10.1038/ncomms13754
Dimova, V., Georgiev, D., Georgiev, R., & Grigorov, S. (2020). Design of an energy efficient building equipped with air conditioning system for growing “kladnitsa” mushrooms. Bulgarian Journal of Agricultural Science, 26, 221–228. https://www.agrojournal.org/26/01s-29.pdf
Engler, N., & Krarti, M. (2021). Review of energy efficiency in controlled environment agriculture. Renewable and Sustainable Energy Reviews, 141(February), 110786. https://doi.org/10.1016/j.rser.2021.110786
Espínola Sobrinho, J., Menezes, J. B., Leitão, M. M. V. B. R., Souza, T. H., Melo, F. C., & Machado, F. L. C. (2004). Effect of air temperature on mango tree yield and fruit quality. Acta Horticulturae, 645, 189–194. https://doi.org/10.17660/ActaHortic.2004.645.16
Evans, J. A., Foster, A. M., Huet, J. M., Reinholdt, L., Fikiin, K., Zilio, C., Houska, M., Landfeld, A., Bond, C., Scheurs, M., & Van Sambeeck, T. W. M. (2014). Specific energy consumption values for various refrigerated food cold stores. Energy and Buildings, 74(2014), 141–151. https://doi.org/10.1016/j.enbuild.2013.11.075
Fordham, R., & Hadley, P. (2003). Cabbage and related vegetables. Encyclopedia of Food Sciences and Nutrition, 5932–5936. https://doi.org/10.1016/B0-12-227055-X/01234-7
Hou, P., Liu, Y., Xie, R., Ming, B., Ma, D., Li, S., & Mei, X. (2014). Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Research, 158(June 2022), 55–64. https://doi.org/10.1016/j.fcr.2013.12.021
Ibikunle, R. A., Akintunde, M. A., Titiladunayo, I. F., & Adeleke, A. A. (2022). Estimation of coefficient of performance of thermoelectric cooler using a 30 W single-stage type. International Review of Applied Sciences and Engineering, 13(2), 124–132. https://doi.org/10.1556/1848.2021.00322
Iyi, D., Hasan, R., & Penlington, R. (2018). Experimental and numerical study of Buoyancy-driven low turbulence flow in rectangular enclosure partially filled with isolated solid blockages. International Journal of Heat and Mass Transfer, 127, 534–545. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.031
Joshi, V. V., & Patil, S. (2019). Heat transfer enhancement in a calandria based reactor with a new inlet design - A CFD analysis. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao, 40(3), 299–306. https://journal.csme.org.tw/vol_file.aspx?lang=en&fid=20210505134215
Kayaçetın, F., Onemlı, F., Yilmaz, G., Khaward, K. M., Kinay, A., Hatıpoğlu, H., Kivilcimf, M. N., Kara, N., Köse, A., Sefaoğlu, F., & Ozaydina, K. A. (2019). Growing degree day and seed yield relationships in mustard (Brassica juncea L.) under different sowing seasons and locations of Turkey. Tarim Bilimleri Dergisi, 25(3), 298–308. https://doi.org/10.15832/ankutbd.424218
Khan, F., & Chandra, R. (2017). Effect of physiochemical factors on fruiting body formation in mushroom. International Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 33–36. https://doi.org/10.22159/ijpps.2017v9i10.20086
Kulkarni, P. S., Rajan, N. K. S., Suneel, M. P., & Joshi, V. (2018). Fluid flow and heat transfer analysis in a calandria based reactor for different fuel channel configurations. 10th International Conference on Computational Fluid Dynamics, ICCFD 2018 - Proceedings, 1–9. https://www.iccfd.org/iccfd10/papers/ICCFD10-270-Paper.pdf
Kumar, A., & Subudhi, S. (2020). Thermal fluctuations and boundary layer properties of turbulent natural convection inside open cavities of different dimensions heated from below. Physics of Fluids, 067114(32), 067114-(1-12). https://doi.org/10.1063/5.0008160
Lakhiar, I. A., Gao, J., Syed, T. N., Chandio, F. A., & Buttar, N. A. (2018). Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. Journal of Plant Interactions, 13(1), 338–352. https://doi.org/10.1080/17429145.2018.1472308
Morgan, R. G., Ibarra, R., Zadrazil, I., Matar, O. K., Hewitt, G. F., & Markides, C. N. (2017). On the role of buoyancy-driven instabilities in horizontal liquid–liquid flow. International Journal of Multiphase Flow, 89, 123–135. https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.009
Mostafavi, S. A., & Rezaei, A. (2019). Energy consumption in greenhouses and selection of an optimized heating system with minimum energy consumption. Heat Transfer - Asian Research, 48(7), 3257–3277. https://doi.org/10.1002/htj.21540
Netam, R. S., Yadav, S. C., Mukherjee, S. C., & Kumari, P. (2018). Cultivation of button mushroom (Agaricus bisporus) under controlled condition: An initiative in bastar plateau of chhattisgarh. International Journal of Current Microbiology and Applied Sciences, 7(10), 782–787. https://doi.org/10.20546/ijcmas.2018.710.087
Pasapuleti, P., Reddy Siddavatam, A. K., & Krishnamoorthy, H. S. (2022). Net-zero-energy based sustainable agriculture: A case study of container mushroom farming. 10th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES. https://doi.org/10.1109/PEDES56012.2022.10080538
Plouraboué, F., Rudkiewicz, M., David, F., Neau, H., & Debenest, G. (2024). Natural convective loops heat transfer scaling analysis. International Journal of Heat and Mass Transfer, 218(September 2023), 124743. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124743
Ratnarajah, V., & Gnanachelvam, N. (2021). Effect of Abiotic Stress on Onion Yield: A Review. Advances in Technology, 1(1), 147–160. https://doi.org/10.31357/ait.v1i1.4876
Revathi, S., Sivakumaran, N., & Radhakrishnan, T. K. (2019). Design of solar-powered forced ventilation system and energy-efficient thermal comfort operation of greenhouse. Materials Today: Proceedings, 46, 9893–9900. https://doi.org/10.1016/j.matpr.2021.01.409
Rubatzky, V. E., & Yamaguchi, M. (2012). World vegetables: principles, production, and nutritive values. Springer Science & Business Media. Springer Science & Business Media. https://doi.org/10.1007/978-94-011-7907-2
Rudresha, N., Vijay Kumar, M., & Math, M. M. (2023). A parametric study and performance investigation of thermoelectric refrigeration system using computational fluid dynamics. International Journal of Air-Conditioning and Refrigeration, 31(1). https://doi.org/10.1007/s44189-023-00031-x
Sanjel, S., Colee, J., Barocco, R. L., Dufault, N. S., Tillman, B. L., Punja, Z. K., Seepaul, R., & Small, I. M. (2024). Environmental factors influencing stem rot development in peanut: predictors and action thresholds for disease management. Phytopathology, 114(2), 393–404. https://doi.org/10.1094/PHYTO-05-23-0164-R
Sheikholeslami, M., & Khalili, Z. (2024a). Environmental and energy analysis for photovoltaic-thermoelectric solar unit in existence of nanofluid cooling reporting CO2 emission reduction. Journal of the Taiwan Institute of Chemical Engineers, 156 (December 2023), 105341. https://doi.org/10.1016/j.jtice.2023.105341
Sheikholeslami, M., & Khalili, Z. (2024b). Solar photovoltaic-thermal system with novel design of tube containing eco-friendly nanofluid. Renewable Energy, 222(December 2023), 119862. https://doi.org/10.1016/j.renene.2023.119862
Singh, A. K., & Singh, A. K. (2019). Influence of heat and mass transfer on free convection of micropolar fluid between vertical concentric cylinders. Journal of Applied Fluid Mechanics, 12(5), 1539–1545. https://doi.org/10.29252/jafm.12.05.29040
Söylemez, E., Alpman, E., Onat, A., & Hartomacıoğlu, S. (2021). CFD analysis for predicting cooling time of a domestic refrigerator with thermoelectric cooling system. International Journal of Refrigeration, 123, 138–149. https://doi.org/10.1016/j.ijrefrig.2020.11.012
Söylemez, E., Alpman, E., Onat, A., Yükselentürk, Y., & Hartomacıoğlu, S. (2019). Numerical (CFD) and experimental analysis of hybrid household refrigerator including thermoelectric and vapour compression cooling systems. International Journal of Refrigeration, 99, 300–315. https://doi.org/10.1016/j.ijrefrig.2019.01.007
Weidner, T., Yang, A., & Hamm, M. W. (2021). Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Conversion and Management, 243(April), 114336. https://doi.org/10.1016/j.enconman.2021.114336
Wen, X., Wang, L. P., & Guo, Z. (2021). Development of unsteady natural convection in a square cavity under large temperature difference. Physics of Fluids, 33(8). https://doi.org/10.1063/5.0058399
Wu, C., Wang, M., Cheng, Z., & Meng, H. (2016). Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments. Biology Open, 5(4), 507–518. https://doi.org/10.1242/bio.016444.