Effect of Solidity and Camber Angle on Performance in Contra-rotating Open Rotor Design

Document Type : Regular Article

Authors

1 School of Power and Energy, Northwestern Polytechnical University, Xi'an Shaanxi,710129, China

2 Innovation Center for Advanced Aero-Engine, Beijing,100191, China

Abstract

In this paper, an aerodynamic design method for a contra-rotating open rotor based on lifting line theory is presented. By changing the number of blades, the solidity and camber angle are changed, and several different aerodynamic designs are completed. The effect of solidity and camber angle on the aerodynamic performance is studied. The results show that when the number of blades increases, the solidity linearly increases while the camber angle nonlinearly decreases. There exists an optimal number of blades for aerodynamic design. The highest propulsion efficiency improved by 2.41% compared to the lowest value. The highest propulsion efficiency of 0.81 occurred with 10 blades. Increased solidity leads to increased viscous and wake losses. The change in solidity also changes the shock wave structure in the channel and the static pressure distribution on the blade surface. When the number of blades is reduced, decreased solidity results in greater circumferential differential pressure. The increased camber angle brings a larger inverse pressure gradient in the flow direction. This resulted in a significant flow reversal region in the channel, increasing the rear rotor root losses.

Keywords

Main Subjects


Aungier, R. H. (2003). Axial-flow compressors: a strategy for aerodynamic design and analysis. American Society of Mechanical Engineers, New York.
Barry, M., Sirvin, N., & Boniface, J. (2014, July 28-30). Open-rotor aerodynamics installation effects by a RANS-lifting line coupling method. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH. https://doi.org/10.2514/6.2014-3887
Black, D. M., Menthe, R. W., & Wainauski, H. S. (1978). Aerodynamic design and performance testing of an advanced 30 swept, eight bladed propeller at Mach numbers from 0.2 to 0.85. NASA-CR-3047. Washington, D. C. : NASA.
Boyer, K. M., & O’Brien, W. F. (2003). An improved streamline curvature approach for off-design analysis of transonic axial compression systems. Journal of Turbomachinery, 125(3), 475-481. https://doi.org/10.1115/1.1565085
Boulkeraa, T., Ghenaiet, A., & Benini, E. (2022). Optimum operating parameters and blade setting of a high-speed propeller. Journal of Aircraft, 59(2), 484-501. https://doi.org/10.2514/1.C035861
Britsch, W. R., Osborn, W. M., & Laessig, M. R. (1979). Effects of diffusion factor, aspect ratio and solidity on overall performance of 14 compressor middle stages. NASA-TP-1523.
Brouckaert, J. F., Mirville, F., Phuah, K., & Taferner, P. (2018). Clean Sky research and demonstration programmes for next-generation aircraft engines. The Aeronautical Journal, 122(1254), 1163-1175. https://doi.org/10.1017/aer.2018.37
Busch, G. R., Hassan, M., & Mavris, D. N. (2015, June 22-26). Aircraft open rotor technology: analysis from an operational perspective. 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX. https://doi.org/10.2514/6.2015-2359
Cetin, M., Ucer, A. S., & Hirsch, C. (1987). Application of modified loss and deviation correlations to transonic axial compressors: AGARD-R-745. Neuilly Sur Seine: NATO, 1987
Falissard, F., Boisard, R., Gaveriaux, R., Delattre, G., Gardarein, P., Chelius, A., & Mauffrey, Y. (2018). Influence of blade deformations on open-rotor low-speed and high-speed aerodynamics and aeroacoustics. Journal of Aircraft, 55(6), 2267-2281. https://doi.org/10.2514/1.C034676
Farrar, B., & Agarwal, R. (2015). Computational fluid dynamics analysis of open-rotor engines using an actuator disk model. Journal of Propulsion and Power, 31(3), 989-993. https://doi.org/10.2514/1.B35385
GE36 Design and Systems Engineering. (1987). Full-scale technology demonstration of a modern counter rotating unducted fan engine concept-design report. NASA-CR-180867. Washington, D. C.: NASA.
Hoff, G. E. (1990). Experimental performance and acoustic investigation of modern, counterrotating blade concepts. NASA-CR-185158. Washington, D. C. : NASA.
Hanson, D. B. (1983). Compressible helicoidal surface theory for propeller aerodynamics and noise. AIAA Journal, 21(6), 881-889. https://doi.org/10.2514/3.60132
Kan, K., Chen, H., Zheng, Y., Zhou, D., Binama, M., & Dai, J. (2021a). Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model. Renewable Energy, 164, 109-121. https://doi.org/10.1016/j.renene.2020.09.001
Kan, K., Yang, Z., Lyu, P., Zheng, Y., & Shen, L. (2021b). Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method. Renewable Energy, 168, 960-971. https://doi.org/10.1016/j.renene.2020.12.103
Kirker, T. (1990, October 22-24). Procurement and testing of a 1/5 scale advanced counter rotating propfan model. 13th Aeroacoustics Conference, Tallahassee, FL. https://doi.org/10.2514/6.1990-3975
Kuang, H., Wuli Chu, S., Zhang, H., & Ma, S. (2017). Flow mechanism for stall margin improvement via axial slot casing treatment on a transonic axial compressor. Journal of Applied Fluid Mechanics, 10(2), 703-712. https://doi.org/10.18869/ACADPUB.JAFM.73.239.27047
Larsson, L., Lundbladh, A., & Grönstedt, T. (2014, June 16-20). A conceptual design study of an open rotor powered regional aircraft. Turbo Expo: Power for Land, Sea, and Air, Düsseldorf, Germany. GT2014-26091. https://doi.org/10.1115/GT2014-26091
Liu, Z., Liu, P., Qu, Q., & Hu, T. (2016). Effect of advance ratio and blade planform on the propeller performance of a high altitude airship. Journal of Applied Fluid Mechanics, 9(6), 2993-3000. https://doi.org/10.29252/JAFM.09.06.25203
Liu, F., Han, Z. H., Zhang, Y., Song, K., Song, W. P., Gui, F., & Tang, J. B. (2019). Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance. Aerospace Science and Technology, 93, 105345. https://doi.org/10.1016/j.ast.2019.105345
Nigam, N., Tyagi, A., Chen, P., Alonso, J. J., Palacios, F., Ol, M. V., & Byrnes, J. (2015, January 5-9). Multi-fidelity multi-disciplinary propeller/rotor analysis and design. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. https://doi.org/10.2514/6.2015-0029
Perullo, C. A., Tai, J. C., & Mavris, D. N. (2013). Effects of advanced engine technology on open rotor cycle selection and performance. Journal of Engineering for Gas Turbines and Power, 135(7), 071204. https://doi.org/10.1115/1.4024019
Playle, S. C., Korkan, K. D., & Von Lavante, E. (1986). A numerical method for the design and analysis of counter-rotating propellers. Journal of Propulsion and Power, 2(1), 57-63. https://doi.org/10.2514/3.22845
Rohrbach, C. (1976, July 26-29). A report on the aerodynamic design and wind tunnel test of a prop-fan model. 12th Propulsion Conference, Palo Alto, CA. https://doi.org/10.2514/6.1976-667
Smith Jr, L. H. (1987). Unducted fan aerodynamic design. Journal of Turbomachinery, 109(3), 313-324 https://doi.org/10.1115/1.3262108
Stuermer, A. (2008, July21-23). Unsteady CFD simulations of contra-rotating propeller propulsion systems. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT. https://doi.org/10.2514/6.2008-5218
Stürmer, A., Gutierrez, C. O. M., Roosenboom, E. W., Schröder, A., Geisler, R., Pallek, D., Agocs J., & Neitzke, K. P. (2012). Experimental and numerical investigation of a contra rotating open-rotor flowfield. Journal of Aircraft, 49(6), 1868-1877. https://doi.org/10.2514/1.C031698
Sun, X., Meng, D., Liu, B., & Wang, Q. (2017). Numerical investigation of differential speed operation of two impellers of contra-rotating axial-flow fan. Advances in Mechanical Engineering, 9(10), 1687814017720083. https://doi.org/10.1177/1687814017720083
Van Zante, D. E., Collier, F., Orton, A., Khalid, S. A., Wojno, J. P., & Wood, T. H. (2014). Progress in open rotor propulsors: The FAA/GE/NASA open rotor test campaign. The Aeronautical Journal, 118(1208), 1181-1213. https://doi.org/10.1017/S0001924000009842
Wald, Q. R. (2006). The aerodynamics of propellers. Progress in Aerospace Sciences, 42(2), 85-128. https://doi.org/10.1016/j.paerosci.2006.04.001
Wojno, J., & Janardan, B. (2013, May 27-29). Comparison of NASA 9x15 low speed wind tunnel counter rotating open rotor data with GE-anechoic facility historic data for baseline F31A31 blade design. 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany. https://doi.org/10.2514/6.2013-2204
Zachariadis, A., & Hall, C. A. (2011). Application of a Navier-Stokes solver to the study of open rotor aerodynamics. Journal of Turbomachinery, 133(3), 031025. https://doi.org/10.1115/1.4001246
Zhou Y. C., & Shan P. (2017). Inverse design approach for propfan aerodynamics based on compressible lifting surface theory. Journal of Aerospace Power, 32(6), 1456-1469. https://doi.org/10.13224/j.cnki.jasp.2017.06.024