Al-Saadi, (2018).
Analysis of novel techniques of drag reduction and stability increase for sport utility vehicles using computational fluid dynamics. University of Al-Qadisiyah, February 2019.
https://doi.org/10.13140/RG.2.2.15580.74880
Anderson, J. D. (1995). Computational fluid dynamics : the basics with applications. McGraw-Hill.
Bayraktar, S., & Bilgili, Y. O. (2018). Effects of under body diffuser on the aerodynamics of a generic car.
International Journal of Automotive Engineering and Technologies,
7(2), 99–109.
https://doi.org/10.18245/ijaet.458901
Carbajosa, C., Martinez-Cava, A., Valero, E., & Paniagua, G. (2022). Efficiency of pulsating base bleeding to control trailing edge flow configurations.
Applied Sciences (Switzerland),
12(13).
https://doi.org/10.3390/app12136760
Cooper, K. R., Bertenyi, T., Dutil, G., Syms, J., & Sovran, G. (2018). The Aerodynamic Performance of Automotive Underbody Diffusers
. SAE Technical Paper 980030, 1998.
https://doi.org/10.4271/980030
El-Sharkawy, A. E., Kamrad, J. C., Lounsberry, T. H., Baker, G. L., & Rahman, S. S. (2011). Evaluation of impact of active grille shutter on vehicle thermal management.
SAE International Journal of Materials and Manufacturing,
4(1), 1244–1254.
https://doi.org/10.4271/2011-01-1172
Fabian, M., Huňady, R., Kupec, F., & Mlaka, T. (2022). Effect of the aerodynamic elements of the hatchback tailgate on the aerodynamic drag of the vehicle.
Advances in Science and Technology Research Journal,
16(6), 73–87.
https://doi.org/10.12913/22998624/155308
Fred Browand, Rose McCallen, & James Ross. (2007). The aerodynamics of heavy vehicles II: Trucks, buses, and trains: Vol. II. Lecture Notes in Applied and Computational Mechanics.
Futrzynski, R. (2015). Drag reduction using plasma actuators. Engineering Sciences, KTH Royal Institute of Technology.
Guerrero, A., Castilla, R., & Eid, G. (2022). A numerical aerodynamic analysis on the effect of rear underbody diffusers on road cars.
Applied Sciences (Switzerland),
12(8).
https://doi.org/10.3390/app12083763
Himeno, R., & Fujitani, K. (1993). Numerical analysis and visualization of flow in automobile aerodynamics development.
Journal of Wind Engineering and Industrial Aerodynamics, 46.
https://doi.org/10.1016/0167-6105(93)90354-Q
Hu, X., Zhang, J., Hui, Z., Luo, Y., Guo, P., & Wang, J. (2021). Flow control of automobile with plasma vortex generator.
Journal of Mechanical Science and Technology,
35(6), 2493–2502.
https://doi.org/10.1007/s12206-021-0520-5
Huminic, A., & Huminic, G. (2017). Aerodynamic study of a generic car model with wheels and underbody diffuser.
International Journal of Automotive Technology,
18(3), 397–404.
https://doi.org/10.1007/s12239−017−0040−6
Igali, D., Mukhmetov, O., Zhao, Y., Fok, S. C., & Teh, S. L. (2019). Comparative analysis of turbulence models for automotive aerodynamic simulation and design.
International Journal of Automotive Technology,
20(6), 1145–1152.
https://doi.org/10.1007/s12239-019-0107-7
Irving Brown, Y. A., Windsor, S., & Gaylard, A. P. (2010). The effect of base bleed and rear cavities on the drag of an SUV.
SAE Technical Papers.
https://doi.org/10.4271/2010-01-0512
Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence.
International Journal of Heat and Mass Transfer,
15(2), 301–314.
https://doi.org/10.1016/0017-9310(72)90076-2
Krajnović, S., & Davidson, L. (2005). Influence of floor motions in wind tunnels on the aerodynamics of road vehicles.
Journal of Wind Engineering and Industrial Aerodynamics,
93(9), 677–696.
https://doi.org/10.1016/j.jweia.2005.05.002
Li, J., Deng, Y., Wang, Y., Su, C., & Liu, X. (2018). CFD-Based research on control strategy of the opening of Active Grille Shutter on automobile.
Case Studies in Thermal Engineering,
12, 390–395.
https://doi.org/10.1016/j.csite.2018.05.009
Martini, H., Gullberg, P., & Lofdahl, L. (2014). Comparative studies between CFD and wind tunnel measurements of cooling performance and external aerodynamics for a heavy truck.
SAE International Journal of Commercial Vehicles,
7(2), 2014-01–2443.
https://doi.org/10.4271/2014-01-2443
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA Journal,
32(8), 1598–1605.
https://doi.org/10.2514/3.12149
Mishra, P., & Aharwal, K. R. (2018).
A review on selection of turbulence model for CFD analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1).
https://doi.org/10.1088/1757-899X/402/1/012145
Peng, F., Yan, F., Yin, B. J., & Liang, J. N. (2023). Experimental study on wake characteristics of secondary grooved cylinders with different depths.
Journal of Applied Fluid Mechanics,
16(5), 1057–1073.
https://doi.org/10.47176/jafm.16.05.1592
Rose, M. J. (1981). Commercial vehicle fuel economy — The correlation between aerodynamic drag and fuel consumption of a typical truck.
Journal of Wind Engineering and Industrial Aerodynamics,
9(1–2), 89–100.
https://doi.org/10.1016/0167-6105(81)90080-5
Selvaraju, P. N., & Parammasivam, K. M. (2019). Empirical and numerical analysis of aerodynamic drag on a typical SUV car model at different locations of vortex generator.
Journal of Applied Fluid Mechanics,
12(5), 1487–1496.
https://doi.org/10.29252/JAFM.12.05.29674
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows.
Computers & Fluids,
24(3), 227–238.
https://doi.org/10.1016/0045-7930(94)00032-T
Sinhamahapatra, K. P. (2010). Indian institute of technology kharagpur department of aerospace engineering, ICTACEM (5 2010.12.27-29 Kharagpur), & International Conference on Theoretical, A. (2010). Aerodynamic Effects of Rear Spoiler and Vortex Generators on Passenger Cars.
Sivaraj, G., Parammasivam, K. M., & Suganya, G. (2018). Reduction of aerodynamic drag force for reducing fuel consumption in road vehicle using basebleed.
Journal of Applied Fluid Mechanics,
11(6), 1489–1495.
https://doi.org/10.29252/jafm.11.06.29115
Sivaraj, G., Parammasivam, K. M., Prasath, M. S., & Lakshmanan, D. (2023). Numerical simulation of hatchback car with modified vehicle design for the improvement of fuel consumption.
Journal of Applied Fluid Mechanics,
16(9).
https://doi.org/10.47176/jafm.16.09.1828
Sivaraj, G., Parammasivam, K. M., Prasath, M. S., Vadivelu, P., & Lakshmanan, D. (2021). Low analysis of rear end body shape of the vehicle for better aerodynamic performance.
Materials Today: Proceedings,
47, 2175–2181.
https://doi.org/10.1016/j.matpr.2021.05.521
Urquhart, M., Varney, M., Sebben, S., & Passmore, M. (2020). Aerodynamic drag improvements on a square-back vehicle at yaw using a tapered cavity and asymmetric flaps.
International Journal of Heat and Fluid Flow,
86.
https://doi.org/10.1016/j.ijheatfluidflow.2020.108737
Vahdati, M., Beigmoradi, S., & Batooei, A. (2018). Minimising drag coefficient of a hatchback car utilising fractional factorial design algorithm.
European Journal of Computational Mechanics,
27(4), 322–341.
https://doi.org/10.1080/17797179.2018.1550962
Verma, R. P., Kumar Chaudhary, N., & Avikal, S. (2021). Effect of direction of lip spoiler on the aerodynamic performance of a small passenger vehicle.
Materials Today: Proceedings,
46, 10301–10305.
https://doi.org/10.1016/j.matpr.2020.12.448
Wang, Y., Xin, Y., Gu, Z., Wang, S., Deng, Y., & Yang, X. (2014). Numerical and experimental investigations on the aerodynamic characteristic of three typical passenger vehicles.
Journal of Applied Fluid Mechanics,
7(4), 659–671.
https://doi.org/10.36884/jafm.7.04.21460
Wäschle, A. (2007). The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations.
SAE Technical Paper, 2007.
https://doi.org/10.4271/2007-01-0107.
Wassen, E., & Thiele, F. (2009). Road vehicle drag reduction by combined steady blowing and suction.
39th AIAA Fluid Dynamics Conference, June 2009, San Antonio, Texas.
http://doi.org/10.2514/6.2009-4174.
Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models.
AIAA Journal,
26(11), 1299–1310.
https://doi.org/10.2514/3.10041
Yang, X., Hu, Y., Gong, Z., Jian, J., & Liu, Z. (2022). Numerical study of combined drag reduction bases on vortex generators and riblets for the ahmed body using IDDES methodology.
Journal of Applied Fluid Mechanics,
15(1), 193–207.
https://doi.org/10.47176/jafm.15.01.32832
Zhang, B. H., Zhao, Y. X., & Liu, J. (2020). Effects of bleed hole size on supersonic boundary layer bleed mass flow rate.
Journal of Zhejiang University: Science A,
21(8), 652–662.
https://doi.org/10.1631/jzus.A1900507
Zhang, C., Bounds, C. P., Foster, L., & Uddin, M. (2019). Turbulence modeling effects on the CFD predictions of flow over a detailed full-scale sedan vehicle.
Fluids,
4(3).
https://doi.org/10.3390/fluids4030148