Chen, B. F., & Chiang, H. W. (2000). Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank.
Ocean Engineering,
27, 953-977.
https://doi.org/10.1016/S0029-8018(99)00036-0
Chen, Y. H., Hwang, W. S., & Ko, C. H. (2007). Sloshing behaviours of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations.
Earthquake Engineering and Structural Dynamics,
36, 1701-1717.
https://doi.org/10.1002/eqe.713
Dai, L., & Xu, L. (2006). A numerical scheme for dynamic liquid sloshing in horizontal cylindrical containers.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
220, 901-918.
https://doi.org/10.1243/09544070D16604
De St Venant, B. (1871). Theorie du mouvement non-permanent des eaux avec application aux crues des rivers et a l'introduntion des Marees dans leur lit. Academic de Sci. Comptes Redus, 73, 148-154.
Faltinsen, O. M., & Timokha, A. N. (2009). Sloshing in marine-and land-based applications. Cambridge University Press
Gao, R., Wang, P., Sun, X., & Yang, S. (2021). Isogeometric boundary element analysis of liquid nonlinear sloshing in two dimensional rectangular tanks.
Computer Methods in Applied Mechanics and Engineering,
387, 114135.
https://doi.org/10.1016/j.cma.2021.114135
Gholamipoor, M., & Ghiasi, M. (2022). Numerical analysis of fully non-linear sloshing waves in an arbitrary shape tank by meshless method.
Engineering Analysis with Boundary Elements,
144, 366-379.
https://doi.org/10.1016/j.enganabound.2022.08.025
Gurusamy, S., & Kumar, D. (2020). Experimental study on nonlinear sloshing frequency in shallow water tanks under the effects of excitation amplitude and dispersion parameter.
Ocean Engineering,
213, 107761.
https://doi.org/10.1016/j.oceaneng.2020.107761
Hejazi, F. S. A., & Mohammadi, M. K. (2019). Investigation on sloshing response of water rectangular tanks under horizontal and vertical near fault seismic excitations.
Soil Dynamics and Earthquake Engineering,
116, 637-653.
https://doi.org/10.1016/j.soildyn.2018.10.015
Henderson, F. (1966). Open channel flow. Macmillan, New York
Ibrahim, R. A. (2005). Liquid sloshing dynamics: theory and applications. Cambridge University Press
Karamanos, S. A., & Kouka, A. (2016). A refined analytical model for earthquake-induced sloshing in half–full deformable horizontal cylindrical liquid containers. S
oil Dynamics and Earthquake Engineering,
85, 191-201.
https://doi.org/10.1016/j.soildyn.2016.03.004
Kobayashi, N Kobayashi., Mieda, T., Shibata, H., & Shinozaki, Y. (1989). A study of the liquid slosh response in horizontal cylindrical tanks.
Journal of Pressure Vessel Technology, 32-38.
https://doi.org/10.1115/1.3265637
Koh, C., Mahatma, S., & Wang, C. (1994). Theoretical and experimental studies on rectangular liquid dampers under arbitrary excitations.
Earthquake engineering and structural dynamics,
23, 17-31.
https://doi.org/10.1002/eqe.4290230103
Pandit, A., & Biswal, K. (2020). Evaluation of dynamic characteristics of liquid sloshing in sloped bottom tanks.
International journal of dynamics and control,
8, 162-177.
https://doi.org/10.1007/s40435-019-00527-8
Reeve, D., Chadwick, A., & Fleming, C. (2018). Coastal engineering: processes, theory and design practice. CRC Press.
Shimizu, T., & Hayama, S. (1987). Nonlinear responsed of sloshing based on the shallow water wave theory: vibration, control engineering, engineering for industry.
JSME international journal,
30, 806-813.
https://doi.org/10.1299/jsme1987.30.806
Stoker, J. J. (2011). Water waves: The mathematical theory with applications. John Wiley and Sons
Virella, J. C., Prato, C. A., & Godoy, L. A. (2008). Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions.
Journal of Sound and Vibration,
312, 442-460.
https://doi.org/10.1016/j.jsv.2007.07.088
Wu, G., Taylor, R. E., & Greaves, D. (2001). The effect of viscosity on the transient free-surface waves in a two-dimensional tank.
Journal of Engineering Mathematics,
40, 77-90.
https://doi.org/10.1023/A:1017558826258
Yan, S. U., Yuan, X. Y., & Liu, Z. Y. (2020). Numerical researches of three-dimensional nonlinear sloshing in shallow-water rectangular tank.
Applied Ocean Research,
101, 102256.
https://doi.org/10.1016/j.apor.2020.102256