Baker, C. (2010). The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 98(6-7), 277-298. https://doi:10.1016/j.jweia.2009.11.002
Bell, J. R., Burton, D., Thompson, M. C., A. H. Herbst, & J. Sheridan (2015). Moving model analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 136, 127-137. https://doi:10.1016/j.jweia.2014.09.007
Bell, J. R., Burton, D., Thompson, M., A. H. Herbst, & J. Sheridan (2014). Wind tunnel analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 134, 122-138. https://doi:10.1016/j.jweia.2014.09.004
CEN European Standard (2009). Railway Applications—Aerodynamics—Part 4: Requirements and Test Procedures for Aerodynamics on Open Track, CEN EN 14067-4.
CEN European Standard (2010). Railway Applications—Aerodynamics—Part 6: Requirements and Test Procedures for Cross Wind Assessment, CEN EN 14067-6.
CEN European Standard (2013). Railway Applications—Aerodynamics—Part 4: Requirements and Test Procedures for Aerodynamics on Open Track, CEN EN14067-4.
Cheli, F., Corradi, R., Rocchi, D., Tomasini.G, & Maestrini. E (2010). Wind tunnel tests on train scale models to investigate the effect of infrastructure scenario. Journal of Wind Engineering and Industrial Aerodynamics, 98(6-7), 353-362. https://doi:10.1016/j.jweia.2010.01.001
Chu, C. R., Chien, S. Y., Wang, C. Y., & Wu, T. R. (2014). Numerical simulation of two trains intersecting in a tunnel. Tunnelling and Underground Space Technology, 42, 161-174. https://doi:10.1016/j.tust.2014.02.013
Fluent Inc. (2015). Fluent Theory Guide.
Jönsson, M., Wagner, C., & Loose, S. (2014). Particle image velocimetry of the underfloor flow for generic high-speed train models in a water towing tank. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(2), 194-209. https://doi:10.1177/0954409712470607
Niu, J., Wang, Y., Liu, F., & Li, R. (2021). Numerical study on comparison of detailed flow field and aerodynamic performance of bogies of stationary train and moving train. Vehicle System Dynamics, 59(12): 1844-1866. https://doi:10.1080/00423114.2020.1794015
Paz, C., Suárez, E., & Gil, C. (2017). Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 167: 140-147. https://doi:10.1016/j.jweia.2017.04.017
Raghunathan, R. S., Kim, H, D., & Setoguchi, T. (2002). Aerodynamics of high-speed railway train. Progress in Aerospace sciences, 38(6-7), 469-514. https://doi:10.1016/S0376-0421(02)00029-5
Soper, D., Baker, C., Jackson, A., Milne, D. R., Le Pen, L., Watson, G., & Powrie, W. (2017). Full scale measurements of train underbody flows and track forces. Journal of Wind Engineering and Industrial Aerodynamics, 169, 251-264. https://doi:10.1016/j.jweia.2017.07.023
Sun, Z., Zhang, Y., Guo, D., Yang, G., & Liu, Y. (2014). Research on running stability of CRH3 high speed trains passing by each other. Engineering Applications of Computational Fluid Mechanics, 8(1), 140-157. https://doi:10.1080/19942060.2014.11015504
Tian, H. Q. (2019). Review of research on high-speed railway aerodynamics in China. Transportation Safety and Environment, 1(1). https://doi:10.1093/tse/tdz014
Wang, J., Wang, T., Yang, M., Qian, B., Zhang, L., Tian, X., & Shi, F. (2022). Research on the influence of different heating zone lengths on pressure waves and a newly designed method of pressure wave mitigation in railway tunnels. Tunnelling and Underground Space Technology, 122, 104379. https://doi:10.1016/j.tust.2022.104379
Wang, S., Bell, J. R., Burton, D., Herbst, A. H., Sheridan, J., & Thompson, M. C. (2017). The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream. Journal of Wind Engineering and Industrial Aerodynamics, 165, 46-57. https://doi:10.1016/j.jweia.2017.03.001
Wang, S., Burton, D., Herbst, A. H., Sheridan, J., & Thompson, M. C. (2020). The impact of rails on high-speed train slipstream and wake. Journal of Wind Engineering and Industrial Aerodynamics, 198, 104114. https://doi:10.1016/j.jweia.2020.104114
Wang, S., Burton, D., Herbst, A., Sheridan, J., & Thompson, M. C. (2018). The effect of bogies on high-speed train slipstream and wake. Journal of Fluids and Structures, 83, 471-489. https://doi:10.1016/j.jfluidstructs.2018.03.013
Wang, Y., Wang, T., Jiang, C., Wu, Y., Zhao, C., Shi, F., & Tian, X. (2023). Numerical study on slipstream-induced snow drifting and accumulation in the bogie region of a high-speed train passing the snowy ballast bed. Journal of Wind Engineering and Industrial Aerodynamics, 232, 105269. https://doi:10.1016/j.jweia.2022.105269
Xia, C., Shan, X., & Yang, Z. (2017). Comparison of different ground simulation systems on the flow around a high-speed train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(2), 135-147. https://doi:10.1177/095440971562619