Effects of Different Attack Angles and Guide Vane Numbers on the Vortex-solid Interaction Noise of Axial Flow Fan

Document Type : Regular Article

Authors

1 College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China

2 Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China

10.47176/jafm.18.1.2651

Abstract

This paper utilizes experiments and numerical simulations to investigate the effects of different attack angles of the rotor and the number of guide vanes on the vortex-solid interaction and noise generation of an axial flow fan. The noise and the flow field are measured using far-/near-field microphone arrays and the particle imaging velocimetry (PIV) technique, respectively, conducted in a fully anechoic wind tunnel measuring 0.5m × 0.4m. The numerical simulation uses Large Eddy Simulation (LES). The results reveal that the axial flow fan's noise is all influenced by vortex-solid interaction in various degrees. The angle of attack α changes the noise magnitude by affecting the blades' interaction with the surrounding fluid, causing different pressure pulsations. As the angle of attack α of the rotor blade increases, the tonal noise at the harmonics increases significantly. The increase in noise is partly related to the increment of flow separation caused by the attack angle and partly related to the periodic movement of the rotor blade wake vortex from the front of the static blade to the middle and rear of the static blade. The irregularly distributed static blades reduce the appearance of tonal noise while slightly increasing the work capacity.

Keywords

Main Subjects


Benedek, T., & Vad, J. (2021). Beamforming based extension of semi-empirical noise modelling for low-speed axial flow fans. Applied Acoustics, 178, 108018. https://doi.org/10.1016/j.apacoust.2021.108018
Canepa, E., Cattanei, A., Jafelice, F., Zecchin, F. M., & Parodi, D. (2018). Effect of rotor deformation and blade loading on the leakage noise in low-speed axial fans. Journal of Sound and Vibration, 433, 99-123. https://doi.org/10.1016/j.jsv.2018.07.005
Čantrak, Đ. S., Janković, N. Z., & Ilić, D. B. (2015). Investigation of the turbulent swirl flow in pipe generated by axial fans using PIV and LDA methods. Theoretical and Applied Mechanics, 42(3), 211-222. https://doi.org/10.2298/TAM1503211C
Carolus, T., Schneider, M., & Reese, H. (2007). Axial flow fan broad-band noise and prediction. Journal of sound and vibration, 300(1-2), 50-70. https://doi.org/10.1016/j.jsv.2006.07.025
Chapman, G. T., & Yates, L. A. (1991). Topology of flow separation on three-dimensional bodies. Applied Mechanics Reviews, 44(7), 329-345. https://doi.org/10.1115/1.3119507
Han, T., & Patel, V. C. (1977). Flow-visualization of three-dimensional boundary-layer separation on bodies of revolution at incidence (No. 205). Iowa Institute of Hydraulic Research, University of Iowa. https://ui.adsabs.harvard.edu/abs/1977STIN...7813387H/abstract
Lewis, D., de Laborderie, J., Sanjosé, M., Moreau, S., Jacob, M. C., & Masson, V. (2021). Parametric study on state-of-the-art analytical models for fan broadband interaction noise predictions. Journal of Sound and Vibration, 514, 116423. https://doi.org/10.1016/j.jsv.2021.116423
Li, B., Lu, Q., Jiang, B., Yang, J., Wang, J., & Xie, J. (2022). Effects of outer edge bending on the aerodynamic and noise characters of axial fan for air conditioners. Processes, 10(4), 686. https://doi.org/10.3390/pr10040686
Liu, F., Wang, J. I. A. B. I. N. G., & Wu, K. E. Q. I. (2008). Numerical analysis of controlling separation in axial cascades by excitation of periodical incoming wake. TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk, 12(1-2), 21-34. https://doi.journal.mostwiedzy.pl/TASKQuarterly/article/view/2047
Liu, H., Ouyang, H., Wu, Y., Tian, J., & Du, Z. (2014). Investigation of unsteady flows and noise in rotor-stator interaction with adjustable lean vane. Engineering Applications of Computational Fluid Mechanics, 8(2), 299-307. https://doi.org/10.1080/19942060.2014.11015515
Liu, X. (2018). Aerodynamic and wake development of aerofoils with trailing-edge serrations [Doctoral dissertation, University of Bristol]. https://research-information.bris.ac.uk/ws/portalfiles/portal/181451764/Final_Copy_2018_11_06_Liu_X_PhD.pdf
Longhouse, R. E. (1976). Noise mechanism separation and design considerations for low tip-speed, axial-flow fans. Journal of Sound and Vibration, 48(4), 461-474. https://doi.org/10.1016/0022-460X(76)90550-2
Lu, H., Xiao, Y., Liu, Z., & Yuan, Y. (2022). Simulation and experimental research on aerodynamic noise of gas turbine 1.5-stage axial compressor. Applied Acoustics, 192, 108722. https://doi.org/10.1016/j.apacoust.2022.108722
Lu, Z. (1991) A study on mode of 3-dimensional separation and open separation. Separated Flows and Jets: IUTAM-Symposium, Springer, 2018.04.043Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84447-8_32
Niu, X., Wang, X. N., & Li, Y. (2021). Numerical and experimental study for rotor-stator interaction noise of an axial fan. Acta Aerodynamica Sinica, 39(5), 44-52. https://doi.org/10.1016/j.euromechflu.2021.02.004
Park, M., Lee, D. J., & Lee, H. (2022a). Inflow effects on tonal noise of axial fan under system resistances. Applied Acoustics, 192, 108737. https://doi.org/10.1016/j.apacoust.2022.108737
Park, M., Lee, D. J., & Lee, H. (2022b). Tonal and broadband noise attenuation of an axial flow fan with forward and backward swept blades. Applied Acoustics, 195, 108837. https://doi.org/10.1016/j.apacoust.2022.108837
Pereira, A., & Jacob, M. C. (2022). Modal analysis of in-duct fan broadband noise via an iterative Bayesian inverse approach. Journal of Sound and Vibration, 520, 116633. https://doi.org/10.1016/j.jsv.2021.116633
Simonich, J. C., McCormick, D. C., & Lavrich, P. L. (1993). Role of leading-edge vortex flows in prop-fan interaction noise. Journal of Aircraft, 30(2), 255-261. https://arc.aiaa.org/doi/abs/10.2514/3.48274?journalCode=ja
Wang, K. C. (1972). Separation patterns of boundary layer over an inclined body of revolution. Aiaa Journal, 10(8), 1044-1050. https://www.sci-hub.ee/10.2514/3.50292
Ying, W. (2021). High-order numerical simulations of broadband noise of turbulence-cascade interaction in aero-engines [Doctoral dissertation]. https://doi.org/10.14711/thesis-991012936264003412
Zanon, A., De Gennaro, M., Kuehnelt, H., & Giannattasio, P. (2018). Assessment of the broadband noise from an unducted axial fan including the effect of the inflow turbulence. Journal of Sound and Vibration, 429, 18-33. https://doi.org/10.1016/j.jsv.2018.04.043