Akhlaghi, M., Asadbeigi, M., & Ghafoorian, F. (2023). on Novel CFD and DMST dual method parametric study and optimization of a Darrieus vertical axis wind turbine.
Journal of Applied Fluid Mechanics, 17(1), 205-218.
https://doi.org/10.47176/jafm.17.1.1985
Cathey, H. M., & Fairbrother, D. A. (2013). The 2012 nasa˜ 532,200 m3 super pressure balloon test flight. AIAA Balloon Systems (BAL) Conference (p. 1269).
Du, H., Li, J., Zhu, W. Qu, Z., Zhang, L., & Lv, M. (2019a). Flight performance simulation and station-keeping endurance analysis for stratospheric super-pressure balloon in real wind field.
Aerospace Science and Technology,
86, 1–10.
https://doi.org/10.1016/j.ast.2019.01.001
Du, H., Lv, M., Li, J. Zhu, W., Zhang, L., & Wu, Y. (2019b). Station-keeping performance analysis for high altitude balloon with altitude control system.
Aerospace Science and Technology,
92, 644–652.
https://doi.org/10.1016/j.ast.2019.06.035
Dykema, J., Keith, D., Anderson, J. & Weisenstein, D. (2014). Stratospheric controlled perturbation experiment: A small-scale experiment to improve understanding of the risks of solar geoengineering.
Philosophical transactions. Series A, Mathematical, Physical, and Engineering Sciences,
372.
https://doi.org/10.1098/rsta.2014.0059.
Farley, R. (2005). Balloonascent: 3-d simulation tool for the ascent and float of high-altitude balloons.
AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences (p. 7412).
https://doi.org/10.2514/6.2005-7412
Garde, G. (2005).
Comparison of two balloon flight simulation programs. AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences (p. 7413).
https://doi.org/10.2514/6.2005-7413
Ghafoorian, F., Mirmotahari, S. R., Wan, H. (2024). Numerical study on aerodynamic performance improvement and efficiency enhancement of the savonius vertical axis wind turbine with semi-directional airfoil guide vane.
Ocean Engineering,
307.
https://doi.org/10.1016/j.oceaneng.2024.118186
Jewtoukoff, V., Plougonven, R., Hertzog, A. Snyder, C., & Romine, G. (2016). On the prediction of stratospheric balloon trajectories: improving winds with mesoscale simulations.
Journal of Atmospheric and Oceanic Technology,
33(8), 1629–1647.
https://doi.org/10.1175/JTECH-D-15-0110.1
Kahyan, Ö. (2020). Station keeping of wind driven stratospheric balloon via propulsion unit.
Journal of Engineering Sciences and Design, 8(1), 252-261.
https://doi.org/10.21923/jesd.397265
Li, J., Liao, J., Liao, Y. Du, H., Luo, S., Zhu, W., & Lv, M. (2018). An approach for estimating perpetual endurance of the stratospheric solar-powered platform.
Aerospace Science And Technology,
79, 118–130.
https://doi.org/10.1016/j.ast.2018.05.035
Liu, Y., Xu, Z., Du, H. & Lv, M. (2022). Increased utilization of real wind fields to improve station-keeping performance of stratospheric balloon.
Aerospace Science and Technology,
122, 107399.
https://doi.org/10.1016/j.ast.2022.107399
Lohani, B., Foran, D., Mohammadian, A., & Nistor, I. (2022). Numerical model of a tidal current acceleration structure.
Journal of Renewable and Sustainable Energy,
14(5), 054502. URL:
https://doi.org/10.1063/5.0104471.
Miller, G., Stoia, T., Harmala, D. & Atreya, S. (2005).
Operational capability of high altitude solar powered airships. AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences (p. 7487).
https://doi.org/10.2514/6.2005-7487
Morrison, F. A. (2013).
An introduction to fluid mechanics. (Cambridge University Press, New York, 2013). This correlation appears in Figure 8.13 on page 625., 186.
https://doi.org/10.1017/CBO9781139047463
Palumbo, R., Russo, M., Filippone, E. & Corraro, F. (2007).
Achab: Analysis code for high-altitude balloons. AIAA Atmospheric Flight Mechanics Conference and Exhibit (p. 6642).
https://doi.org/10.2514/6.2007-6642
Ramesh, S. S., Ma, J., Lim, K. M. Lee, H P., & Khoo, B C. (2018). Numerical evaluation of station-keeping strategies for stratospheric balloons.
Aerospace Science and Technology,
80, 288–300.
https://doi.org/10.1016/j.ast.2018.07.010
Schur, W. (2002). The design process for a pumpkin balloon: structural synthesis, structural analysis, and analytical assessment of some critical design issues.
Advances in Space Research,
30(5), 1193–1198.
https://doi.org/10.1016/S0273-1177(02)00532-X
Sóbester, A., Czerski, H., Zapponi, N.& Castro, I. (2014). High-altitude gas balloon trajectory prediction: a monte carlo model.
AIAA Journal,
52(4), 832–842.
https://doi.org/10.2514/1.J052900
Sun, Q., Lim, K.-M., Lee, & Khoo, B. (2015).
Air drag on a stratospheric balloon in tropical regions. Academic High Altitude Conference. Iowa State University Digital Press volume 2015.
https://doi.org/10.31274/ahac.5572
Tang, J., Pu, S., Yu, P. Xie, W., Li, Y., & Hu, B. (2022). Research on trajectory prediction of a high-altitude zero-pressure balloon system to assist rapid recovery.
Aerospace,
9(10), 622.
https://doi.org/10.3390/aerospace9100622
van Wynsberghe, E., & Turak, A. (2016). Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study.
Acta Astronautica,
128, 616–627.
https://doi.org/10.1016/j.actaastro.2016.08.017