Anderson, T. B., & Jackson, R. (1967). A fluid mechanical description of fluidized beds,
Industrial & Engineering Chemistry Fundamentals, 6, 527-534.
https://doi.org/10.1021/i160024a007
ANSYS FLUENT, User’s Guide (Release 18.2). ANSYS Inc, (2017).
Azadbakhti, R., Pourfattah, F., Ahmadi, A., Akbari, O., & Toghraie, D. (2020). Eulerian – Eulerian multi-phaseRPI modeling of turbulent forced convective of boiling flow inside the tube with porous medium.
International Journal of Numerical Methods for Heat & Fluid Flow,
30(5), 2739-2757.
https://doi.org/10.1108/HFF-03-2019-0194
Bowen, R. M. (1976). Theory of mixtures, volume 3 of continuum physics, mixtures and em field theories. Academic Press, Cambridge, Chapter 2, 1-127.
Etminan, A., Muzychka, Y. S., & Pope, K. (2021a). Film thickness and pressure drop for gas-liquid taylor flow in microchannels.
Journal of Fluid Flow, Heat and Mass Transfer, 8, 60-71.
https://doi.org/10.11159/jffhmt.2021.008
Etminan, A., Muzychka, Y. S., & Pope, K. (2021b). Liquid film thickness of two-phase slug flows in capillary microchannels: A review paper.
The Canadian Journal of Chemichal Engineering, 1-24.
https://doi.org/10.1002/cjce.24068
Hasanpour, B., Irandoost, M. S., Hassani, M., & Kouhikamali, R. (2018). Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions.
Heat and Mass Transfer, 54(2), 1925–1936.
https://doi.org/10.1007/s00231-018-2289-3
Igaadi, A., Mghari, H. El., & Amraoui R. El. (2023). Computational analysis of subcooled flow boiling in a vertical minichannel with two different shapes under various mass fluxes.
Journal of Applied Fluid Mechanics,
16(10), 2069-2081.
https://doi.org/10.47176/jafm.16.10.1787
Kandlikar, S. G. (1990). A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes.
Journal of Heat Transfer, 112(1), 219-228.
https://doi.org/10.1115/1.2910348
Kural, N., & Podowski, M. (1991). On the modeling of multidimensional effects in boiling channels. Proceedings of 27th National Heat Transfer Conference, Minneapolis, 30-40.
Laviéville, J., Boucker, M., Quémérais, E., Mimouni, S., & Méchitoua N. (2006). NEPTUNE CFD V1.0 Theory Manual, EDF.
Monferrer, C. P., Andreu, G. M, Chiva, S., Cuenca, R. M., & Muñoz-Cobo, J. L. (2018). A CFD-DEM solver to model bubbly flow. Part I: Model development and assessment in upward vertical pipes.
Chemical Engineering Science, 176, 524-545.
https://doi.org/10.1016/j.ces.2017.11.005
Mughal, M. U. K., Waheed, K., Sadiq, M. I., Molla, A. H., Harun, Z., & Etminan, A. (2024). Water flow boiling in micro/mini channels using volume of fluid model.
Applied Sciences,
14, 759.
https://doi.org/10.3390/app14020759
Pang, M., Wei, J., Yu, B. (2010), Numerical study of bubbly upflows in a vertical channel using the Euler-Lagrange two-way model.
Chemical Engineering Sciences,
65, 6215-6228.
https://doi.org/10.1016/j.ces.2010.09.008
Shah, M. M. (1982). Chart correlation for saturated boiling heat transfer: equation and further study. ASHRAE Transactions, 88(1), 185-196.
Shah, M. M. (2006). Evaluation of general correlations for heat transfer during boiling of saturated liquids in tubes and annuli.
American Society of Heating and Air-conditioning Engineers, 12(4), 1047-1063.
https://doi.org/10.1080/10789669.2006.10391450
Wu, Z., Qian, X., Peng, X.,
Song, Y., Song, W., Song, F., & Liu, P. (2023). Modeling of subcooled flow boiling for hypervapotron in divertor of fusion reactor based on RPI model.
Case Studies in Thermal Engineering, 49, 103289.
https://doi.org/10.1016/j.csite.2023.103289
Yang, H., Xue, J., Li, L., Li, X., Lin, P., & Zhu, Z. (2022). Modeling of bubbly flow using a combined volume of fluid and discrete bubble model: investigation on interphase forces.
Journal of Applied Fluid Mechanics,
15(3), 843-855.
https://doi.org/10.47176/jafm.15.03.33280
Ye, T., Shyy, W., & Chung J. N. (2001). A fixed-grid, sharp-interface method for bubble dynamics and phase change.
Journal of Computational Physics,
174(2), 781-815.
https://doi.org/10.1006/jcph.2001.6938
Zhang, C., Chen, L., Qin, F., Liu, L., Ji, W. T., & Tao, W. Q. (2023). Lattice Boltzmann study of bubble dynamic behaviors and heat transfer performance during flow boiling in a serpentine microchannel.
Applied Thermal Engineering,
218, 119331.
https://doi.org/10.1016/j.applthermaleng.2022.119331
Zhou, Z., Wang, S., He, J., Ke, H., Lin, M., & Wang, Q. (2023). Bubble dynamics and heat transfer characteristics of flow boiling in a single pentagonal rib channel.
ASME Journal of Heat And Mass Transfer,
145(1), 011602.
https://doi.org/10.1115/1.4056067