Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator

Document Type : Regular Article

Authors

1 Fluid Mechanics Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia

2 Department of Mechanical Engineering, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, 12450, Indonesia

3 National Research and Innovation Agency (BRIN), Jl. M.H. Thamrin, DKI Jakarta, 10340, Indonesia

4 Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia

10.47176/jafm.18.5.3100

Abstract

The improvement of the fluidic oscillator as an active flow control device is studied in depth. The interior geometry of the fluidic oscillator is modified by adding backward-facing step (BFS). Variations of BFS height (H) are 2, 4, 6, 8, and 10 mm. The study is carried out computationally using OpenFoam. An unstructured mesh is used in this study, with the mesh quality maintained at y+<5. The highest frequency increase occurs at BFS height of 10 mm, which is 36.45%. On the other hand, BFS also increases the average pressure drop by less than 5%, as observed across all height variations. Overall, this study suggests using BFS height of 10 mm. The increase in the momentum of the return flow within the feedback channel leads to a higher oscillation frequency of the fluidic oscillator. The increase in average pressure drop is due to the presence of a recirculation bubble right in the step.

Keywords

Main Subjects


Anderson, J. D. (2005). Ludwig prandtl’s boundary layer. Physics Today, 58(12), 42–48. https://doi.org/10.1063/1.2169443
Biswas, G., Breuer, M., & Durst, F. (2004). Backward-facing step flows for various expansion ratios at low and moderate reynolds numbers. Journal of Fluids Engineering, Transactions of the ASME, 126(3), 362–374. https://doi.org/10.1115/1.1760532
Bobusch, B. C., Woszidlo, R., Bergada, J. M., Nayeri, C. N., & Paschereit, C. O. (2013). Experimental study of the internal flow structures inside a fluidic oscillator. Experiments in Fluids, 54(6), 1559. https://doi.org/10.1007/s00348-013-1559-6
Farahinia, A., Zhang, W. J., & Badea, I. (2020). Circulating tumor cell separation of blood cells and sorting in novel microfluidic approaches: a review. Preprints. https://doi.org/10.20944/preprints202010.0622.v1
Farahinia, A., Zhang, W., & Badea, I. (2023). Recent developments in inertial and centrifugal microfluidic systems along with the involved forces for cancer cell separation: a review. Sensors, 23(11), 5300. https://doi.org/10.3390/s23115300
Frank, W. (2018). Building aerodynamics. Handbook of flow visualization (pp. 661–666). Routledge.
Gaertlein, S., Woszidlo, R., Ostermann, F., Nayeri, C., & Paschereit, C. O. (2014). The time-resolved internal and external flow field properties of a fluidic oscillator. 52nd Aerospace Sciences Meeting, 1143. https://doi.org/10.2514/6.2014-1143
Harinaldi, H., Budiarso, B., Julian, J., & WS, A. (2015). Drag reduction in flow separation using plasma actuator in a cylinder model. https://repo-dosen.ulm.ac.id//handle/123456789/8588
Iskandar, W. (2022). Study of airfoil characteristics on NACA 4415 with reynolds number variations. International Review on Modelling and Simulations (IREMOS), 15(3), 162–171. https://doi.org/10.15866/iremos.v15i3.21684
Julian, J., Iskandar, W., & Wahyuni, F. (2023). Effect of mesh shape and turbulence model on aerodynamic performance at NACA 4415. Journal of Applied Fluid Mechanics, 16(12), 2504–2517. https://doi.org/10.47176/jafm.16.12.1983 
Kara, K., Kim, D., & Morris, P. J. (2018). Flow-separation control using sweeping jet actuator. AIAA Journal, 56(11), 4604–4613. https://doi.org/10.2514/1.J056715
Koklu, M., & Owens, L. R. (2017). Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control. AIAA Journal, 55(3), 848–860. https://doi.org/10.2514/1.J055286
Krüger, O., Bobusch, B. C., Woszidlo, R., & Paschereit, C. O. (2013). Numerical modeling and validation of the flow in a fluidic oscillator. 21st AIAA Computational Fluid Dynamics Conference. https://doi.org/10.2514/6.2013-3087
Lacombe, F., Pelletier, D., & Garon, A. (2019). Compatible wall functions and adaptive remeshing for the k-omega SST model. AIAA Scitech 2019 Forum, 2329. https://doi.org/10.2514/6.2019-2329
Liu, G., Bie, H., Hao, Z., Wang, Y., Ren, W., & Hua, Z. (2022). Characteristics of cavitation onset and development in a self-excited fluidic oscillator. Ultrasonics Sonochemistry, 86, 106018. https://doi.org/https://doi.org/10.1016/j.ultsonch.2022.106018
Löffler, S., Ebert, C., & Weiss, J. (2021). Fluidic-oscillator-based pulsed jet actuators for flow separation control. Fluids, 6(4). https://doi.org/10.3390/FLUIDS6040166
Metka, M., & Gregory, J. W. (2015). Drag reduction on the 25-deg Ahmed model using fluidic oscillators. Journal of Fluids Engineering, Transactions of the ASME, 137(5). https://doi.org/10.1115/1.4029535
Nili-Ahmadabadi, M., Cho, D. S., & Kim, K. C. (2020). Design of a novel vortex-based feedback fluidic oscillator with numerical evaluation. Engineering Applications of Computational Fluid Mechanics, 14(1), 1302–1324. https://doi.org/10.1080/19942060.2020.1826360
Otto, C., Tewes, P., Little, J. C., & Woszidlo, R. (2019). Comparison between fluidic oscillators and steady jets for separation control. AIAA Journal, 57(12), 5220–5229. https://doi.org/10.2514/1.J058081
Portillo, D. J., Hoffman, E. N. A., Garcia, M., Lalonde, E. J., & Hernandez, E. (2021). Modal analysis of a sweeping jet emitted by a fluidic oscillator. AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021. https://doi.org/10.2514/6.2021-2835
Portillo, D. J., Hoffman, E., Garcia, M., LaLonde, E., Combs, C., & Hood, R. L. (2022). The effects of compressibility on the performance and modal structures of a sweeping jet emitted from various scales of a fluidic oscillator. Fluids, 7(7), 251. https://doi.org/10.3390/fluids7070251
Roache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, 116(3), 405–413. https://doi.org/10.1115/1.2910291
Scharnowski, S., Bolgar, I., & Kähler, C. J. (2017). Characterization of turbulent structures in a transonic backward-facing step flow. Flow, Turbulence and Combustion, 98(4), 947–967. https://doi.org/10.1007/s10494-016-9792-8
Seo, J. H., Zhu, C., & Mittal, R. (2018). Flow physics and frequency scaling of sweeping jet fluidic oscillators. AIAA Journal, 56(6), 2208–2219. https://doi.org/10.2514/1.J056563
Tajik, A. R., Kara, K., & Parezanović, V. (2021). Sensitivity of a fluidic oscillator to modifications of feedback channel and mixing chamber geometry. Experiments in Fluids, 62(12), 250. https://doi.org/10.1007/s00348-021-03342-0
TesaÅ™, V., Zhong, S., & Rasheed, F. (2012). New fluidic-oscillator concept for flow-separation control. AIAA Journal, 51(2), 397–405. https://doi.org/10.2514/1.J051791
Tony, A., Rasouli, A., Farahinia, A., Wells, G., Zhang, H., Achenbach, S., Yang, S. M., Sun, W., & Zhang, W. (2021). Toward a soft microfluidic system: concept and preliminary developments. 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 755–759. https://doi.org/10.1109/M2VIP49856.2021.9665022
Woszidlo, R., Ostermann, F., Nayeri, C. N., & Paschereit, C. O. (2015). The time-resolved natural flow field of a fluidic oscillator. Experiments in Fluids, 56(6), 125. https://doi.org/10.1007/s00348-015-1993-8
Yang, J. T., Chen, C. K., Tsai, K. J., Lin, W. Z., & Sheen, H. J. (2007). A novel fluidic oscillator incorporating step-shaped attachment walls. Sensors and Actuators A: Physical, 135(2), 476–483. https://doi.org/10.1016/j.sna.2006.09.016