Biswas, G., Breuer, M., & Durst, F. (2004). Backward-facing step flows for various expansion ratios at low and moderate reynolds numbers.
Journal of Fluids Engineering, Transactions of the ASME,
126(3), 362–374.
https://doi.org/10.1115/1.1760532
Bobusch, B. C., Woszidlo, R., Bergada, J. M., Nayeri, C. N., & Paschereit, C. O. (2013). Experimental study of the internal flow structures inside a fluidic oscillator.
Experiments in Fluids,
54(6), 1559.
https://doi.org/10.1007/s00348-013-1559-6
Farahinia, A., Zhang, W., & Badea, I. (2023). Recent developments in inertial and centrifugal microfluidic systems along with the involved forces for cancer cell separation: a review.
Sensors,
23(11), 5300.
https://doi.org/10.3390/s23115300
Frank, W. (2018). Building aerodynamics. Handbook of flow visualization (pp. 661–666). Routledge.
Gaertlein, S., Woszidlo, R., Ostermann, F., Nayeri, C., & Paschereit, C. O. (2014). The time-resolved internal and external flow field properties of a fluidic oscillator.
52nd Aerospace Sciences Meeting, 1143.
https://doi.org/10.2514/6.2014-1143
Iskandar, W. (2022). Study of airfoil characteristics on NACA 4415 with reynolds number variations.
International Review on Modelling and Simulations (IREMOS),
15(3), 162–171.
https://doi.org/10.15866/iremos.v15i3.21684
Julian, J., Iskandar, W., & Wahyuni, F. (2023). Effect of mesh shape and turbulence model on aerodynamic performance at NACA 4415.
Journal of Applied Fluid Mechanics,
16(12), 2504–2517.
https://doi.org/10.47176/jafm.16.12.1983
Koklu, M., & Owens, L. R. (2017). Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control.
AIAA Journal,
55(3), 848–860.
https://doi.org/10.2514/1.J055286
Krüger, O., Bobusch, B. C., Woszidlo, R., & Paschereit, C. O. (2013).
Numerical modeling and validation of the flow in a fluidic oscillator. 21st AIAA Computational Fluid Dynamics Conference.
https://doi.org/10.2514/6.2013-3087
Lacombe, F., Pelletier, D., & Garon, A. (2019). Compatible wall functions and adaptive remeshing for the k-omega SST model.
AIAA Scitech 2019 Forum, 2329.
https://doi.org/10.2514/6.2019-2329
Liu, G., Bie, H., Hao, Z., Wang, Y., Ren, W., & Hua, Z. (2022). Characteristics of cavitation onset and development in a self-excited fluidic oscillator.
Ultrasonics Sonochemistry,
86, 106018.
https://doi.org/https://doi.org/10.1016/j.ultsonch.2022.106018
Metka, M., & Gregory, J. W. (2015). Drag reduction on the 25-deg Ahmed model using fluidic oscillators.
Journal of Fluids Engineering, Transactions of the ASME,
137(5).
https://doi.org/10.1115/1.4029535
Nili-Ahmadabadi, M., Cho, D. S., & Kim, K. C. (2020). Design of a novel vortex-based feedback fluidic oscillator with numerical evaluation.
Engineering Applications of Computational Fluid Mechanics,
14(1), 1302–1324.
https://doi.org/10.1080/19942060.2020.1826360
Otto, C., Tewes, P., Little, J. C., & Woszidlo, R. (2019). Comparison between fluidic oscillators and steady jets for separation control.
AIAA Journal,
57(12), 5220–5229.
https://doi.org/10.2514/1.J058081
Portillo, D. J., Hoffman, E. N. A., Garcia, M., Lalonde, E. J., & Hernandez, E. (2021).
Modal analysis of a sweeping jet emitted by a fluidic oscillator. AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021.
https://doi.org/10.2514/6.2021-2835
Portillo, D. J., Hoffman, E., Garcia, M., LaLonde, E., Combs, C., & Hood, R. L. (2022). The effects of compressibility on the performance and modal structures of a sweeping jet emitted from various scales of a fluidic oscillator.
Fluids,
7(7), 251.
https://doi.org/10.3390/fluids7070251
Roache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies.
Journal of Fluids Engineering,
116(3), 405–413.
https://doi.org/10.1115/1.2910291
Scharnowski, S., Bolgar, I., & Kähler, C. J. (2017). Characterization of turbulent structures in a transonic backward-facing step flow.
Flow, Turbulence and Combustion,
98(4), 947–967.
https://doi.org/10.1007/s10494-016-9792-8
Seo, J. H., Zhu, C., & Mittal, R. (2018). Flow physics and frequency scaling of sweeping jet fluidic oscillators.
AIAA Journal,
56(6), 2208–2219.
https://doi.org/10.2514/1.J056563
Tajik, A. R., Kara, K., & Parezanović, V. (2021). Sensitivity of a fluidic oscillator to modifications of feedback channel and mixing chamber geometry.
Experiments in Fluids,
62(12), 250.
https://doi.org/10.1007/s00348-021-03342-0
TesaÅ™, V., Zhong, S., & Rasheed, F. (2012). New fluidic-oscillator concept for flow-separation control.
AIAA Journal,
51(2), 397–405.
https://doi.org/10.2514/1.J051791
Tony, A., Rasouli, A., Farahinia, A., Wells, G., Zhang, H., Achenbach, S., Yang, S. M., Sun, W., & Zhang, W. (2021).
Toward a soft microfluidic system: concept and preliminary developments. 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 755–759.
https://doi.org/10.1109/M2VIP49856.2021.9665022
Woszidlo, R., Ostermann, F., Nayeri, C. N., & Paschereit, C. O. (2015). The time-resolved natural flow field of a fluidic oscillator.
Experiments in Fluids,
56(6), 125.
https://doi.org/10.1007/s00348-015-1993-8
Yang, J. T., Chen, C. K., Tsai, K. J., Lin, W. Z., & Sheen, H. J. (2007). A novel fluidic oscillator incorporating step-shaped attachment walls.
Sensors and Actuators A: Physical,
135(2), 476–483.
https://doi.org/10.1016/j.sna.2006.09.016