Gong, H., Yu, B., Peng, Y., & Dai, F. (2019). Promoting coalescence of droplets in oil subjected to pulsed electric fields: changing and matching optimal electric field intensity and frequency for demulsification.
Journal of Dispersion Science and Technology,
40(9), 1236-1245.
https://doi.org/:10.1080/01932691.2018.1505525
Hosseini, M., & Shahavi, M. (2012). Electrostatic enhancement of coalescence of oil droplets (in nanometer scale) in water emulsion.
Chinese Journal of Chemical Engineering,
20(4), 654-658.
https://doi.org/:10.1016/S1004-9541(11)60231-0
Hu, J., Chen, J., Zhang, X., Xiao, J., An, S., Luan, Z., Liu, F., & Zhang, B. (2021). Dynamic demulsification of oil-in-water emulsions with electrocoalescence: Diameter distribution of oil droplets.
Separation and Purification Technology,
254, 117631.
https://doi.org/:10.1016/j.seppur.2020.117631
Huang, X., He, L., Luo, X., & Yin, H. (2020). Droplet dynamic response in low‐viscosity fluid subjected to a pulsed electric field and an alternating electric field.
AIChE Journal,
66(4), e16869.
https://doi.org/:10.1002/aic.16869
Ichikawa, T., & Nakajima, Y. (2004). Rapid demulsification of dense oil-in-water emulsion by low external electric field.: II. Theory.
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
242(1-3), 27-37.
https://doi.org/:10.1016/j.colsurfa.2004.04.042
Latva-Kokko, M., & Rothman, D. H. (2005). Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids.
Physical Review E—Statistical, Nonlinear
, and Soft Matter Physics,
71(5), 056702.
https://doi.org/:10.1103/PhysRevE.71.056702
Leclaire, S., Reggio, M., & Trépanier, J. Y. (2013). Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios.
Journal of Computational Physics,
246, 318-342.
https://doi.org/:10.1016/j.jcp.2013.03.039
Li, N., Pang, Y., Sun, Z., Wang, Z., Sun, X., Tang, T., Li, B., Li, W., & Zeng, H. (2023). Probing the coalescence mechanism of water droplet and Oil/Water interface in demulsification process under DC electric field.
Separation and Purification Technology,
326, 124798.
https://doi.org/:10.1016/j.seppur.2023.124798
Mhatre, S., Vivacqua, V., Ghadiri, M., Abdullah, A., Al-Marri, M., Hassanpour, A., Hewakandamby, B., Azzopardi, B., & Kermani, B. (2015). Electrostatic phase separation: A review.
Chemical Engineering Research and Design,
96, 177-195.
https://doi.org/:10.1016/j.cherd.2015.02.012
Mizoguchi, Y., & Muto, A. (2019). Demulsification of oil-in-water emulsions by application of an electric field: relationship between droplet size distribution and demulsification efficiency.
Journal of Chemical Engineering of Japan,
52(10), 799-804.
https://doi.org/:10.1252/jcej.19we022
Mohammadian, E., Taju Ariffin, T. S., Azdarpour, A., Hamidi, H., Yusof, S., Sabet, M., & Yahya, E. (2018). Demulsification of light malaysian crude oil emulsions using an electric field method.
Industrial & Engineering Chemistry Research,
57(39), 13247-13256.
https://doi.org/:10.1021/acs.iecr.8b02216
Peng, Y., Liu, T., Gong, H., & Zhang, X. (2016). Review of the dynamics of coalescence and demulsification by high‐voltage pulsed electric fields.
International Journal of Chemical Engineering,
2016(1), 2492453.
https://doi.org/:10.1155/2016/2492453
Qi, Z., Sun, Z., & Li, N. (2022). Effect of electric field intensity on electrophoretic migration and deformation of oil droplets in O/W emulsion under DC electric field: A molecular dynamics study.
Chemical Engineering Science, 262, 118034.
https://doi.org/10.1016/j.ces.2022.118034
Ramadhan, M. G., Khalid, N., Uemura, K., Neves, M. A., Ichikawa, S., & Nakajima, M. (2023). Efficient water removal from water-in-oil emulsions by high electric field demulsification.
Separation Science and Technology,
58(1), 164-174.
https://doi.org/:10.1080/01496395.2022.2086882
Ren, B., & Kang, Y. (2019). Aggregation of oil droplets and demulsification performance of oil-in-water emulsion in bidirectional pulsed electric field.
Separation and Purification Technology,
211, 958-965.
https://doi.org/:10.1016/j.seppur.2018.10.053
Tang, L., Wang, T., & Xu, Y. (2024). Research and application progress of crude oil demulsification technology.
Processes, 12(10), 2292.
https://doi.org/10.3390/pr12102292
Wang, Z., Qi, X., Zhuang, Y., Wang, Q., & Sun, X. (2023). Effect of flow field and electric field coupling on oil–water emulsion separation.
Desalination and Water Treatment, 283, 79-96.
https://doi.org/10.5004/dwt.2023.29221
Zhang, H., Zhou, B., Zhou, X., Yang, S., Liu, S., Wang, X., Yuan, S., & Yuan, S. (2022). Molecular dynamics simulation of demulsification of O/W emulsion containing soil in direct current electric field.
Journal of Molecular Liquids,
361, 119618.
https://doi.org/:10.1016/j.molliq.2022.119618
Zhao, Z., Kang, Y., Wu, S., & Sheng, K. (2022). Demulsification performance of oil-in-water emulsion in bidirectional pulsed electric field with starlike electrodes arrangement.
Journal of Dispersion Science and Technology,
43(14), 2082-2091.
https://doi.org/:10.1080/01932691.2021.1915156
Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L. C., Elnashaie, S. S., & Pendashteh, A. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry.
Separation and Purification Technology,
170, 377-407.
https://doi.org/:10.1016/j.seppur.2016.06.026