Analysis of the Influence of Nozzle Structure and Hydraulic Parameters on the Cutting Efficiency of High-pressure Abrasive Water Jet (AWJ)

Document Type : Regular Article

Authors

1 School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, 610500, PR China

2 Oil and Gas Equipment Technology Sharing and Service Platform of Sichuan Province, Chengdu, 610500, PR China

3 Well Control Emergency Rescue Response Center of CNPC Chuanqing Drilling Engineering Co., Ltd., Guanghan, Sichuan 618300, China

10.47176/jafm.18.5.2959

Abstract

The purpose of this study is to enhance the cutting efficiency of high-pressure abrasive water jet (AWJ) by optimizing nozzle structure and jet hydraulic parameters. To achieve nozzle structure optimization, CFD models of various nozzle shapes were established. The results indicate that the conduit length of conical nozzles has minimal impact on the cutting ability of the jet, while the conical nozzle with a taper angle of 40° exhibits excellent guiding characteristics. Furthermore, an infinite SPH AWJ cutting model with different hydraulic parameter settings was developed for the coupled numerical analysis of pump pressure, flow rate, and nozzle diameter. Through extensive numerical simulations, the study plotted curves of cutting depth and volume against pump pressure, flow rate, abrasive concentration, and nozzle diameter. The results show that, under specific hydraulic parameters, there exists an optimal abrasive concentration; and increasing the displacement leads to an increase in this optimal concentration. Furthermore, under constant pump pressure, increasing the nozzle diameter leads to an increase in flow rate. Additionally, both cutting depth and volume initially increase and then decrease, reaching their maximum values when the nozzle diameter ranges from 4mm to 5mm. The research findings provide a solid theoretical basis for abrasive jet cutting technology.

Keywords

Main Subjects


Ahmet, H., Çaydaş, U., & Gürün, H. (2006). Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy. Materials and Design, 28,1953-1957. https://doi.org/10.1016/j.matdes.2006.04.020
Akkurt, A. (2010). Cut front geometry characterization in cutting applications of brass with AWJ. Journal of Materials Engineering and Performance, 19, 599-606. https://doi.org/10.1007/s11665-009-9513-8
Akkurt, A., Kemal, K. M., & Ulvi, S. (2004). Effect of feed rate on surface roughness in abrasive waterjet cutting applications. Journal of Materials Processing Technology, 147, 389-396. https://doi.org/10.1016/j.jmatprotec.2004.01.013
Antuono, M., Colagrossi, A., & Bouscasse, B. (2012). Particle packing algorithm for SPH schemes. Computer Physics Communications, 183, 1641-1653. https://doi.org/10.1016/j.cpc.2012.02.032
Babu, M. K., & Chetty, O. V. K. (2006). A study on the use of single mesh size abrasives in abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 29, 532-540. https://doi.org/10.1007/s00170-005-2536-x
Bitter, J. G. A. (1963). A study of erosion phenomena. Wear, 6, 5-21. https://doi.org/10.1016/0043-1648(63)90073-5
Boud, F., Loo, L. F., & Kinnell, P. K. (2014). The impact of plain waterjet machining on the surface integrity of Aluminium 7475. Procedia CIRP, 13, 382-386. https://doi.org/10.1016/j.procir.2014.04.065
Cai, C., Wang, X. C., & Yuan, X. H. (2019). Experimental investigation on perforation of shale with ultra-high pressureAWJ: Shape, mechanism and sensitivity. Journal of Natural Gas Science and Engineering, 67, 196-213. https://doi.org/10.1016/j.jngse.2019.05.002
Chu, W. H., Zhu, D. J., & Liang, D. L. (2018). Dynamic characteristics of three-dimensional complex structure based on coupling algorithm. Explos Shock Waves, 38, 725–734. https://doi.org/10.11883/bzycj-2016-0283
Crespo, A. J. C., Domínguez, J. M., & Rogers, B. D. (2015). DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Computer Physics Communications, 187, 204-216. https://doi.org/10.1016/j.cpc.2014.10.004
Demiral, M., Abbassi, F., & Saracyakupoglu, T. (2022). Damage analysis of a CFRP cross-ply laminate subjected toAWJ cutting. Alexandria Engineering Journal, 61, 7669–7684. https://doi.org/10.1016/j.aej.2022.01.018
ElTobgy, M. S., Ng, E., & Elbestawi, M. A. (2005). Finite element modeling of erosive wear. International Journal of Machine Tools and Manufacture, 45, 1337-1346. https://doi.org/10.1016/j.ijmachtools.2005.01.007
Gunamgari, B. R., & Kharub, M. (2022). Experimental investigation onAWJ cutting of high strength aluminium 7068 alloy. Materials Today: Proceedings, 69, 488-493. https://doi.org/10.1016/j.matpr.2022.09.180
Hashish, M. (1984). Cutting with abrasive waterjets. Mechanical Engineering 106, 60–69.
Hashish, M. (1989). Pressure effects in abrasive-waterjet (AWJ) machinin. Journal of Engineering Materials and Technology, 111, 221-228.https://doi.10.1115/1.3226458
Hashish, M. (1995). Material properties in abrasive-waterjet machining. Journal of Engineering for Industry, 117, 578-583. https://doi.10.1115/1.2803536
Hu, Y. G., Lu, W. B., & Chen, M. (2015). Implementation and verification of SPH-FEM coupling blasting damage analytical method. Chinese Journal of Rock Mechanics and Engineering, 34, 2740-2748. https://doi.org/10.13722/j.cnki.jrme.2014.0104
Jegaraj, J. J. R., & Babu, N. R. (2005). A strategy for efficient and quality cutting of materials with abrasive waterjets considering the variation in orifice and focusing nozzle diameter. International Journal of Machine Tools and Manufacture, 45, 1443-1450. https://doi.org/10.1016/j.ijmachtools.2005.01.020
Murugesh, L., & Scattergood, R. O. (1990). Effect of indentation load on fragmentation of erosion particle tips. Wear, 141, 115-124. https://doi.org/10.1016/0043-1648(90)90196-H
Natarajan, Y., & Pradeep, K. M. (2017). Study and evaluation ofAWJ cutting performance on AA5083-H32 aluminum alloy by varying the jet impingement angles with different abrasive mesh sizes. Machining Science and Technology, 21, 385-415. https://doi.org/10.1080/10910344.2017.1283958
Niranjan, C. A., Srinivas, S., & Ramachandra, M. (2018). Effect of process parameters on depth of penetration and topography of AZ91 magnesium alloy inAWJ cutting. Journal of Magnesium and Alloys, 6, 366-374. https://doi.org/10.1016/j.jma.2018.07.001
Pozzetti, G. & Peters, B. (2018). A numerical approach for the evaluation of particle-induced erosion in an abrasive waterjet focusing tube. Powder Technology, 330, 229-242. https://doi.org/10.1016/j.powtec.2018.04.006
Soori, M., & Arezoo, B. (2024). Minimization of surface roughness and residual stress in abrasive water jet cutting of titanium alloy Ti6Al4V. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(4), 1613-1625. https://doi.org/10.1177/09544089231157972
Thakur, P. M., & Raut, D. N. (2023). Experimental investigation on surface topography in submerged abrasive waterjet cutting of Ti6Al4V. Advances in Industrial and Manufacturing Engineering, 6, 100113. https://doi.org/10.1016/j.aime.2023.100113
Tian, J. L., Hu, Z. C., & Liu, S. (2021). Simulation analysis and experimental research of abrasive water jet. Fluid Machinery, 49, 1005-0329.
Vikas, B. G., & Srinivas, S. (2020). Kerf analysis and delamination studies on glass-epoxy composites cut byAWJ. Materials Today: Proceedings, 2214-7853. https://doi.org/10.1016/j.matpr.2020.09.683
Yang, S., Zhu, X. Y., & Wang, H. (2019). Error characteristic analysis of jet impact momentum law test apparatus based on a SPH-FEM coupling algorithm. Journal of Vibration and Shock, 38:253-260. https://doi.org/10.13465/j.cnki.jvs.2019.16.036
Yuvaraj, N., & Kumar, M. P. (2016). Cutting of aluminium alloy with abrasive water jet: and cryogenic assisted abrasive water jet: A comparative study of the surface integrity approach. Wear, 362-363, 18-32. https://doi.10.1016/j.wear.2016.05.008
Zhao, H. H., Jiang, H. X., & Warisawa, S. N. C. (2023). Numerical study ofAWJ rotational slits in hard rock using a coupled SPH-FEM method. Powder Technology, 426, 118622. https://doi.10.1016/j.powtec.2023.118622
Zhao, N., Xue, P., & Li, Y. L. (2010). Study on dynamic response of honeycomb sandwich panels subjected to bird i mpact. Acta Armamentarii, A1, 184-189.