Abdulkadir, M., Hernandez-Perez, V., Lo, S., Lowndes, I. S., & Azzopardi, B. J. (2015). Comparison of experimental and Computational Fluid Dynamics (CFD) studies of slug flow in a vertical riser.
Experimental Thermal and Fluid Science,
68, 468–483.
https://doi.org/10.1016/j.expthermflusci.2015.06.004
Agarwal, R., & Dondapati, R. S. (2020). Numerical investigation on hydrodynamic characteristics of two-phase flow with liquid hydrogen through cryogenic feed lines at terrestrial and microgravity.
Applied Thermal Engineering,
173(September 2019), 115240.
https://doi.org/10.1016/j.applthermaleng.2020.115240
Ahammad, M., Olewski, T., Véchot, L. N., & Mannan, S. (2016). A CFD based model to predict film boiling heat transfer of cryogenic liquids.
Journal of Loss Prevention in the Process Industries,
44, 247–254.
https://doi.org/10.1016/j.jlp.2016.09.017
Al Ghafri, S. Z. S., Swanger, A., Jusko, V., Siahvashi, A., Perez, F., Johns, M. L., & May, E. F. (2022). Modelling of liquid hydrogen boil‐off.
Energies,
15(3).
https://doi.org/10.3390/en15031149
Archipley, C., Barclay, J., Meinhardt, K., Whyatt, G., Thomsen, E., Holladay, J., Cui, J., Anderson, I., & Wolf, S. (2022). Methane liquefaction with an active magnetic regenerative refrigerator.
Cryogenics,
128(October), 103588.
https://doi.org/10.1016/j.cryogenics.2022.103588
Bhuva, V. J., Jani, J. P., Patel, A., & Tiwari, N. (2022). Effect of bubble coalescence on two-phase flow boiling heat transfer in raccoon microchannel - A numerical study.
International Journal of Heat and Mass Transfer,
182, 121943.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121943
Burkhardt, H., Sippel, M., Herbertz, A., & Klevanski, J. (2004). Kerosene vs methane: A propellant tradeoff for reusable liquid booster stages.
Journal of Spacecraft and Rockets,
41(5), 762–769.
https://doi.org/10.2514/1.2672
Chen, J., Zeng, R., Chen, H., & Xie, J. (2020). Effects of wall superheat and mass flux on flow film boiling in cryogenic chilldown process.
AIP Advances,
10(1).
https://doi.org/10.1063/1.5135643
Chen, J., Zeng, R., Zhang, X., Qiu, L., & Xie, J. (2018). Numerical modeling of flow film boiling in cryogenic chilldown process using the AIAD framework.
International Journal of Heat and Mass Transfer,
124, 269–278.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.087
Davanipour, M., Javanmardi, H., & Goodarzi, N. (2018). Chaotic self-tuning pid controller based on fuzzy wavelet neural network model.
Iranian Journal of Science and Technology - Transactions of Electrical Engineering,
42(3), 357–366.
https://doi.org/10.1007/s40998-018-0069-1
Duan, Y., Pan, C., Wang, W., Li, L., & Zhou, Y. (2023). Design and optimization of heat exchanger in coaxial pulse tube cryocooler working above 100 K.
Cryogenics,
129(November 2022), 103607.
https://doi.org/10.1016/j.cryogenics.2022.103607
Fang, X., Sudarchikov, A. M., Chen, Y., Dong, A., & Wang, R. (2016). Experimental investigation of saturated flow boiling heat transfer of nitrogen in a macro-tube.
International Journal of Heat and Mass Transfer,
99, 681–690.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.126
Fertahi, S. ed-D., Bouhal, T., Agrouaz, Y., Kousksou, T., El Rhafiki, T., & Zeraouli, Y. (2018). Performance optimization of a two-phase closed thermosyphon through CFD numerical simulations.
Applied Thermal Engineering,
128, 551–563.
https://doi.org/10.1016/j.applthermaleng.2017.09.049
Gao, Y., Wang, Z., Li, Y., Ma, E., & Yu, H. (2024). Flow boiling of liquid nitrogen in a horizontal macro-tube at low pressure: Part I - flow pattern, two-phase flow instability, and pressure drop.
International Journal of Heat and Fluid Flow,
107(January), 109335.
https://doi.org/10.1016/j.ijheatfluidflow.2024.109335
Hedayatpour, A., Antar, B. N., & Kawaji, M. (1993). Cool-down of a vertical line with liquid nitrogen.
Journal of Thermophysics and Heat Transfer,
7(3), 426–434.
https://doi.org/10.2514/3.436
Hu, H., Chung, J. N., & Amber, S. H. (2012). An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe.
Cryogenics,
52(4–6), 268–277.
https://doi.org/10.1016/j.cryogenics.2012.01.033
Iannetti, A., Girard, N., Tchou-kien, D., Bonhomme, C., Ravier, N., & Edeline, E. (2017).
Prometheus, a Lox/Lch4 Reusable Rocket Engine. 7 Th European Conference for Aeronautics and Space Sciences (Eucass), 1–9.
https://doi.org/10.13009/EUCASS2017-537
Jeon, G. M., Park, J. C., & Choi, S. (2021). Multiphase-thermal simulation on BOG/BOR estimation due to phase change in cryogenic liquid storage tanks.
Applied Thermal Engineering,
184(November 2020), 116264.
https://doi.org/10.1016/j.applthermaleng.2020.116264
Jouhara, H., Chauhan, A., Guichet, V., Delpech, B., Abdelkarem, M. A., Olabi, A. G., & Trembley, J. (2023). Low-temperature heat transfer mediums for cryogenic applications.
Journal of the Taiwan Institute of Chemical Engineers, 104709.
https://doi.org/10.1016/j.jtice.2023.104709
Lee, J., Mudawar, I., Hasan, M. M., Nahra, H. K., & Mackey, J. R. (2022). Experimental and computational investigation of flow boiling in microgravity.
International Journal of Heat and Mass Transfer,
183, 122237.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122237
Lee, W. H. (2013).
A Pressure iteration scheme for two-phase flow modeling. Computational Methods For Two-Phase Flow And Particle Transport (Vol. 1, pp. 61–82). World Scientific.
https://doi.org/10.1142/9789814460286_0004
Ling, T., Wang, T., Lei, G., Fang, Z., Zhao, L., & Xu, C. (2021). Experimental study on slug flow characteristics and its suppression by microbubbles in gas-liquid mixture pipeline.
Journal of Applied Fluid Mechanics,
14(2), 567–579.
https://doi.org/10.47176/jafm.14.02.31482
Meyer, M. L., Motil, S. M., Kortes, T. F., Taylor, W. J., & Mcright, P. S. (2012).
cryogenic propellant storage and transfer technology demonstration for long duration in-space missions.
http://www.sti.nasa.gov
Sha, W., Leng, G., Xu, R. S., & Li, S. (2024). Numerical simulationof inlet void fraction affecting oil-gas two-phase flow characteristics in 90° elbows.
Journal of Applied Fluid Mechanics,
17(7), 1524–1535.
https://doi.org/10.47176/jafm.17.7.2341
Srinivasan, K., Seshagiri Rao, V., & Krishna Murthy, M. V. (1974). Analytical and experimental investigation on cool-down of short cryogenic transfer lines.
Cryogenics,
14(9), 489–494.
https://doi.org/10.1016/0011-2275(74)90125-8
Wang, Y. Z., Hua, Y. X., & Meng, H. (2010). Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane.
Journal of Thermophysics and Heat Transfer,
24(3), 490–500.
https://doi.org/10.2514/1.46769
Linstrom, P. J., & Mallard, W. G. (2001). The NIST Chemistry WebBook: A Chemical Data Resource on the Internet.
Journal of Chemical & Engineering Data, 46(5), 10591063.
https://doi.org/10.1021/je000236i
Wu, B., Firouzi, M., Mitchell, T., Rufford, T. E., Leonardi, C., & Towler, B. (2017). A critical review of flow maps for gas-liquid flows in vertical pipes and annuli.
Chemical Engineering Journal, 326, 350–377.
https://doi.org/10.1016/j.cej.2017.05.135
Xie, H., Yu, L., Zhou, R., Qiu, L., & Zhang, X. (2017). Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography.
Cryogenics,
86, 97–105.
https://doi.org/10.1016/j.cryogenics.2017.07.008
Yung, Y. L., Chen, P., Nealson, K., Atreya, S., Beckett, P., Blank, J. G., Ehlmann, B., Eiler, J., Etiope, G., Ferry, J. G., Forget, F., Gao, P., Hu, R., Kleinböhl, A., Klusman, R., Lefèvre, F., Miller, C., Mischna, M., Mumma, M., Newman, S., Oehler, D., Okumura, M., Oremland, R., Orphan, V., Popa, R., Russell, M., Shen, L., Sherwood Lollar, B., Staehle, R., Stamenković, V., Stolper, D., Templeton, A., Vandaele, A. C., Viscardy, S., Webster, C. R., Wennberg, P. O., Wong, M. L., Worden, J. (2018). Methane on mars and habitability: challenges and responses.
Astrobiology, 18(10), 1221-1242.
https://doi.org/10.1089/ast.2018.1917
Zeghloul, A., & Al-Sarkhi, A. (2023). Improved Drift Flux Void Fraction Model for Horizontal Gas-liquid Intermittent Flow.
Journal of Applied Fluid Mechanics,
16(7), 1499–1510.
https://doi.org/10.47176/jafm.16.07.1693
Zhang, H., Zhi, X., Gu, C., Qi, Y., & Qiu, L. (2022). Numerical analysis of cryogenic LOX-LN2 mass transfer characteristics under different textured surfaces.
Cryogenics, 125.
https://doi.org/10.1016/j.cryogenics.2022.103507
Zhang, Z., Jia, L., Dang, C., & Ding, Y. (2024). Experimental study on flow boiling characteristics of R134a inside high-heat-flux microchannels.
International Journal of Heat and Fluid Flow,
107(April), 109372.
https://doi.org/10.1016/j.ijheatfluidflow.2024.109372
Zheng, Y., Chang, H., Chen, J., Chen, H., & Shu, S. (2019). Effect of microgravity on flow boiling heat transfer of liquid hydrogen in transportation pipes.
International Journal of Hydrogen Energy,
44(11), 5543–5550.
https://doi.org/10.1016/j.ijhydene.2018.08.047