Hydrodynamic and Thermodynamic Behavior of Liquid Methane in a Vertical Feed Pipe

Document Type : Regular Article

Authors

Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India

10.47176/jafm.18.5.3094

Abstract

During the chill-down procedure for a space application system, a multiphase flow of extremely cold propellants will undoubtedly occur in the feed lines. Due to flow instability and varying cooling rates, this cooling technique produces dynamic changes that are challenging to control. Over the past few decades, research has extensively examined the multiphase behaviour of various cryogens, such as liquid nitrogen, liquid hydrogen, and liquid oxygen, while few studies focus on liquid methane. This study addresses this gap by investigating the hydrodynamic and thermodynamic characteristics of LCH₄-VCH₄ multiphase flow in a vertical cryogenic pipe using a well-validated, three-dimensional Volume of Fluid (VOF) model. Further, the current study employs an Eulerian flow scheme coupled with an energy equation to accurately capture the multiphase flow dynamics of liquid methane across various inlet velocities and temperatures. The volume fractions are used to investigate the flow pattern, and the interaction between the two phases and the two-phase flow structure is investigated using velocity profiles and phase distribution. Further, the bulk mean and near-wall temperature results were analysed to understand the temperature variation inside the pipe. Increased inlet temperatures at constant velocities enhance vapour volume fractions, while higher velocities reduce vapour generation, leading to decreased bulk mean temperature due to reduced heat transfer. However, a significant rise in vapour flow rates occurs at elevated temperatures with constant velocity. The volume fraction results show the formation of bubble, annular, and slug flow patterns in the flow regime.

Keywords

Main Subjects


Abdulkadir, M., Hernandez-Perez, V., Lo, S., Lowndes, I. S., & Azzopardi, B. J. (2015). Comparison of experimental and Computational Fluid Dynamics (CFD) studies of slug flow in a vertical riser. Experimental Thermal and Fluid Science, 68, 468–483. https://doi.org/10.1016/j.expthermflusci.2015.06.004
Agarwal, R., & Dondapati, R. S. (2020). Numerical investigation on hydrodynamic characteristics of two-phase flow with liquid hydrogen through cryogenic feed lines at terrestrial and microgravity. Applied Thermal Engineering, 173(September 2019), 115240. https://doi.org/10.1016/j.applthermaleng.2020.115240
Ahammad, M., Olewski, T., Véchot, L. N., & Mannan, S. (2016). A CFD based model to predict film boiling heat transfer of cryogenic liquids. Journal of Loss Prevention in the Process Industries, 44, 247–254. https://doi.org/10.1016/j.jlp.2016.09.017
Al Ghafri, S. Z. S., Swanger, A., Jusko, V., Siahvashi, A., Perez, F., Johns, M. L., & May, E. F. (2022). Modelling of liquid hydrogen boil‐off. Energies, 15(3). https://doi.org/10.3390/en15031149
Antar, B. N., & Collins, F. G. (1995). Vertical line quench in low gravity. 33rd Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1995-698
Archipley, C., Barclay, J., Meinhardt, K., Whyatt, G., Thomsen, E., Holladay, J., Cui, J., Anderson, I., & Wolf, S. (2022). Methane liquefaction with an active magnetic regenerative refrigerator. Cryogenics, 128(October), 103588. https://doi.org/10.1016/j.cryogenics.2022.103588
Baiocco, P., & Bonnal, C. (2016). Technology demonstration for reusable launchers. Acta Astronautica, 120, 43–58. https://doi.org/10.1016/j.actaastro.2015.11.032
Bhuva, V. J., Jani, J. P., Patel, A., & Tiwari, N. (2022). Effect of bubble coalescence on two-phase flow boiling heat transfer in raccoon microchannel - A numerical study. International Journal of Heat and Mass Transfer, 182, 121943. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121943
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
Burkhardt, H., Sippel, M., Herbertz, A., & Klevanski, J. (2004). Kerosene vs methane: A propellant tradeoff for reusable liquid booster stages. Journal of Spacecraft and Rockets, 41(5), 762–769. https://doi.org/10.2514/1.2672
Chen, J., Zeng, R., Chen, H., & Xie, J. (2020). Effects of wall superheat and mass flux on flow film boiling in cryogenic chilldown process. AIP Advances, 10(1). https://doi.org/10.1063/1.5135643
Chen, J., Zeng, R., Zhang, X., Qiu, L., & Xie, J. (2018). Numerical modeling of flow film boiling in cryogenic chilldown process using the AIAD framework. International Journal of Heat and Mass Transfer, 124, 269–278. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.087
Chuang, T. J., & Hibiki, T. (2015). Vertical upward two-phase flow CFD using interfacial area transport equation. Progress in Nuclear Energy (Vol. 85, pp. 415–427). Elsevier Ltd. https://doi.org/10.1016/j.pnucene.2015.07.008
Davanipour, M., Javanmardi, H., & Goodarzi, N. (2018). Chaotic self-tuning pid controller based on fuzzy wavelet neural network model. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 42(3), 357–366. https://doi.org/10.1007/s40998-018-0069-1
Duan, Y., Pan, C., Wang, W., Li, L., & Zhou, Y. (2023). Design and optimization of heat exchanger in coaxial pulse tube cryocooler working above 100 K. Cryogenics, 129(November 2022), 103607. https://doi.org/10.1016/j.cryogenics.2022.103607
Fang, X., Sudarchikov, A. M., Chen, Y., Dong, A., & Wang, R. (2016). Experimental investigation of saturated flow boiling heat transfer of nitrogen in a macro-tube. International Journal of Heat and Mass Transfer, 99, 681–690. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.126
Ferrín, J. L., & Pérez-Pérez, L. J. (2020). Numerical simulation of natural convection and boil-off in a small size pressurized LNG storage tank. Computers and Chemical Engineering, 138. https://doi.org/10.1016/j.compchemeng.2020.106840
Fertahi, S. ed-D., Bouhal, T., Agrouaz, Y., Kousksou, T., El Rhafiki, T., & Zeraouli, Y. (2018). Performance optimization of a two-phase closed thermosyphon through CFD numerical simulations. Applied Thermal Engineering, 128, 551–563. https://doi.org/10.1016/j.applthermaleng.2017.09.049
Fu, X., Qi, S. L., Zhang, P., & Wang, R. Z. (2008). Visualization of flow boiling of liquid nitrogen in a vertical mini-tube. International Journal of Multiphase Flow, 34(4), 333–351. https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.014
Gao, Y., Wang, Z., Li, Y., Ma, E., & Yu, H. (2024). Flow boiling of liquid nitrogen in a horizontal macro-tube at low pressure: Part I - flow pattern, two-phase flow instability, and pressure drop. International Journal of Heat and Fluid Flow, 107(January), 109335. https://doi.org/10.1016/j.ijheatfluidflow.2024.109335
Hartwig, J., Hu, H., Styborski, J., & Chung, J. N. (2015). Comparison of cryogenic flow boiling in liquid nitrogen and liquid hydrogen chilldown experiments. International Journal of Heat and Mass Transfer, 88, 662–673. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.102
Hedayatpour, A., Antar, B. N., & Kawaji, M. (1993). Cool-down of a vertical line with liquid nitrogen. Journal of Thermophysics and Heat Transfer, 7(3), 426–434. https://doi.org/10.2514/3.436
Heldens, J. C., Fridh, J., & Östlund, J. (2021). On the characterization of methane in rocket nozzle cooling channels. Acta Astronautica, 186, 337–346. https://doi.org/10.1016/j.actaastro.2021.05.034
Hu, H., Chung, J. N., & Amber, S. H. (2012). An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe. Cryogenics, 52(4–6), 268–277. https://doi.org/10.1016/j.cryogenics.2012.01.033
Iannetti, A., Girard, N., Tchou-kien, D., Bonhomme, C., Ravier, N., & Edeline, E. (2017). Prometheus, a Lox/Lch4 Reusable Rocket Engine. 7 Th European Conference for Aeronautics and Space Sciences (Eucass), 1–9. https://doi.org/10.13009/EUCASS2017-537
Jeon, G. M., Park, J. C., & Choi, S. (2021). Multiphase-thermal simulation on BOG/BOR estimation due to phase change in cryogenic liquid storage tanks. Applied Thermal Engineering, 184(November 2020), 116264. https://doi.org/10.1016/j.applthermaleng.2020.116264
Jones, H. W. (2018, July). The Recent Large Reduction in Space Launch Cost. 48th International Conference on Environmental Systems, 81. https://ttu-ir.tdl.org/handle/2346/74082
Jouhara, H., Chauhan, A., Guichet, V., Delpech, B., Abdelkarem, M. A., Olabi, A. G., & Trembley, J. (2023). Low-temperature heat transfer mediums for cryogenic applications. Journal of the Taiwan Institute of Chemical Engineers, 104709. https://doi.org/10.1016/j.jtice.2023.104709
Kharangate, C. R., & Mudawar, I. (2017). Review of computational studies on boiling and condensation. International Journal of Heat and Mass Transfer, 108, 1164–1196. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.065
Lee, J., Mudawar, I., Hasan, M. M., Nahra, H. K., & Mackey, J. R. (2022). Experimental and computational investigation of flow boiling in microgravity. International Journal of Heat and Mass Transfer, 183, 122237. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122237
Lee, W. H. (2013). A Pressure iteration scheme for two-phase flow modeling. Computational Methods For Two-Phase Flow And Particle Transport (Vol. 1, pp. 61–82). World Scientific. https://doi.org/10.1142/9789814460286_0004
Ling, T., Wang, T., Lei, G., Fang, Z., Zhao, L., & Xu, C. (2021). Experimental study on slug flow characteristics and its suppression by microbubbles in gas-liquid mixture pipeline. Journal of Applied Fluid Mechanics, 14(2), 567–579. https://doi.org/10.47176/jafm.14.02.31482
Liu, Z., Li, Y., & Jin, Y. (2016). Pressurization performance and temperature stratification in cryogenic final stage propellant tank. Applied Thermal Engineering, 106, 211–220. https://doi.org/10.1016/j.applthermaleng.2016.05.195
Meyer, M. L., Motil, S. M., Kortes, T. F., Taylor, W. J., & Mcright, P. S. (2012). cryogenic propellant storage and transfer technology demonstration for long duration in-space missions. http://www.sti.nasa.gov
Rapp, D. (2016). Human Missions to Mars. Springer International Publishing. https://doi.org/10.1007/978-3-319-22249-3
Salerno, L. J., & Kittel, P. (1999). Cryogenics and the human exploration of Mars. Cryogenics, 39(4), 381–388. https://doi.org/10.1016/S0011-2275(99)00043-0
Sha, W., Leng, G., Xu, R. S., & Li, S. (2024). Numerical simulationof inlet void fraction affecting oil-gas two-phase flow characteristics in 90° elbows. Journal of Applied Fluid Mechanics, 17(7), 1524–1535. https://doi.org/10.47176/jafm.17.7.2341
Srinivasan, K., Seshagiri Rao, V., & Krishna Murthy, M. V. (1974). Analytical and experimental investigation on cool-down of short cryogenic transfer lines. Cryogenics, 14(9), 489–494. https://doi.org/10.1016/0011-2275(74)90125-8
Sun, D., Qiao, X., Yang, D., & Shen, Q. (2023). Experimental study on a two-stage large cooling capacity stirling cryocooler working below 30 K. Cryogenics, 129(November 2022), 103619. https://doi.org/10.1016/j.cryogenics.2022.103619
Wang, Y. Z., Hua, Y. X., & Meng, H. (2010). Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane. Journal of Thermophysics and Heat Transfer, 24(3), 490–500. https://doi.org/10.2514/1.46769
Linstrom, P. J., & Mallard, W. G. (2001). The NIST Chemistry WebBook: A Chemical Data Resource on the Internet. Journal of Chemical & Engineering Data, 46(5), 10591063. https://doi.org/10.1021/je000236i
Wu, B., Firouzi, M., Mitchell, T., Rufford, T. E., Leonardi, C., & Towler, B. (2017). A critical review of flow maps for gas-liquid flows in vertical pipes and annuli. Chemical Engineering Journal, 326, 350–377. https://doi.org/10.1016/j.cej.2017.05.135
Xie, H., Yu, L., Zhou, R., Qiu, L., & Zhang, X. (2017). Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography. Cryogenics, 86, 97–105. https://doi.org/10.1016/j.cryogenics.2017.07.008
Yung, Y. L., Chen, P., Nealson, K., Atreya, S., Beckett, P., Blank, J. G., Ehlmann, B., Eiler, J., Etiope, G., Ferry, J. G., Forget, F., Gao, P., Hu, R., Kleinböhl, A., Klusman, R., Lefèvre, F., Miller, C., Mischna, M., Mumma, M., Newman, S., Oehler, D., Okumura, M., Oremland, R., Orphan, V., Popa, R., Russell, M., Shen, L., Sherwood Lollar, B., Staehle, R., Stamenković, V., Stolper, D., Templeton, A., Vandaele, A. C., Viscardy, S., Webster, C. R., Wennberg, P. O., Wong, M. L., Worden, J. (2018). Methane on mars and habitability: challenges and responses. Astrobiology, 18(10), 1221-1242. https://doi.org/10.1089/ast.2018.1917
Zeghloul, A., & Al-Sarkhi, A. (2023). Improved Drift Flux Void Fraction Model for Horizontal Gas-liquid Intermittent Flow. Journal of Applied Fluid Mechanics, 16(7), 1499–1510. https://doi.org/10.47176/jafm.16.07.1693
Zhang, H., Zhi, X., Gu, C., Qi, Y., & Qiu, L. (2022). Numerical analysis of cryogenic LOX-LN2 mass transfer characteristics under different textured surfaces. Cryogenics, 125. https://doi.org/10.1016/j.cryogenics.2022.103507
Zhang, Z., Jia, L., Dang, C., & Ding, Y. (2024). Experimental study on flow boiling characteristics of R134a inside high-heat-flux microchannels. International Journal of Heat and Fluid Flow, 107(April), 109372. https://doi.org/10.1016/j.ijheatfluidflow.2024.109372
Zheng, Y., Chang, H., Chen, J., Chen, H., & Shu, S. (2019). Effect of microgravity on flow boiling heat transfer of liquid hydrogen in transportation pipes. International Journal of Hydrogen Energy, 44(11), 5543–5550. https://doi.org/10.1016/j.ijhydene.2018.08.047